

Downloaded from http://diabetesjournals.org/care/article-pdf/45/Supplement_1/S60/637536/dc22s005.pdf by guest on 31 August 2022

5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: *Standards of Medical Care in Diabetes—2022*

Diabetes Care 2022;45(Suppl. 1):S60-S82 | https://doi.org/10.2337/dc22-S005

American Diabetes Association Professional Practice Committee*

The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi .org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Building positive health behaviors and maintaining psychological well-being are foundational for achieving diabetes treatment goals and maximizing quality of life (1,2). Essential to achieving these goals are diabetes self-management education and support (DSMES), medical nutrition therapy (MNT), routine physical activity, smoking cessation counseling when needed, and psychosocial care. Following an initial comprehensive medical evaluation (see Section 4, "Comprehensive Medical Evaluation and Assessment of Comorbidities," https://doi.org/10.2337/dc22-S004), patients and providers are encouraged to engage in person-centered collaborative care (3–6), which is guided by shared decision-making in treatment regimen selection; facilitation of obtaining medical, psychosocial, and technology resources as needed; and shared monitoring of agreed-upon regimens and behavioral goals (7,8). Reevaluation during routine care should include assessment of medical, behavioral, and mental health outcomes, especially during times of deterioration in health and well-being.

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendations

5.1 In accordance with the national standards for diabetes self-management education and support, all people with diabetes should participate in diabetes self-management education and receive the support needed to facilitate the knowledge, decision-making, and skills mastery for diabetes self-care. A

*A complete list of members of the American Diabetes Association Professional Practice Committee can be found at https://doi.org/10.2337/ dc22-SPPC.

Suggested citation: American Diabetes Association Professional Practice Committee. 5. Facilitating behavior change and well-being to improve health outcomes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022;45 (Suppl. 1):S60–S82

© 2021 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https:// diabetesjournals.org/journals/pages/license.

- **5.2** There are four critical times to evaluate the need for diabetes self-management education to promote skills acquisition in support of regimen implementation, medical nutrition therapy, and well-being: at diagnosis, annually and/or when not meeting treatment targets, when complicating factors develop (medical, physical, psychosocial), and when transitions in life and care occur. E
- 5.3 Clinical outcomes, health status, and well-being are key goals of diabetes self-management education and support that should be measured as part of routine care. C
- 5.4 Diabetes self-management education and support should be patient-centered, may be offered in group or individual settings, and should be communicated with the entire diabetes care team. A
- 5.5 Digital coaching and digital selfmanagement interventions can be effective methods to deliver diabetes self-management education and support. B
- 5.6 Because diabetes self-management education and support can improve outcomes and reduce costs B, reimbursement by third-party payers is recommended. C
- 5.7 Barriers to diabetes self-management education and support exist at the health system, payer, provider, and patient levels. A Efforts to identify and address barriers to diabetes self-management education and support should be prioritized. E
- 5.8 Some barriers to diabetes selfmanagement education and support access may be mitigated through telemedicine approaches. B

DSMES services facilitate the knowledge, decision-making, and skills mastery necessary for optimal diabetes self-care and incorporate the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSMES are to support informed decision-making, selfcare behaviors, problem-solving, and active collaboration with the health care team to improve clinical outcomes, health status, and well-being in a costeffective manner (2). Providers are encouraged to consider the burden of treatment (9) and the patient's level of confidence and self-efficacy for management behaviors as well as the level of social and family support when providing DSMES. Patient engagement in self-management behaviors and their effects on clinical outcomes, health status, and quality of life, as well as the psychosocial factors impacting the person's ability to self-manage, should be monitored as part of routine clinical care. A randomized controlled trial (RCT) testing a decision-making education and skill-building program (10) showed that addressing these targets improved health outcomes in a population in need of health care resources. Furthermore, following a DSMES curriculum improves quality of care (11).

Additionally, in response to the growing literature that associates potentially judgmental words with increased feelings of shame and guilt, health care professionals are encouraged to consider the impact that language has on building therapeutic relationships and to choose positive, strength-based words and phrases that put people first (4,12). Please see Section 4, "Comprehensive Medical Evaluation and Assessment of Comorbidities" (https://doi.org/10.2337/ dc22-S004), for more on use of language.

Guidelines for DSMES are based on evidence of benefit (2,13). Specifically, DSMES helps people with diabetes to identify and implement effective selfmanagement strategies and cope with diabetes at four critical time points (see below) (2). Ongoing DSMES helps people with diabetes to maintain effective self-management throughout the life course as they encounter new challenges and as advances in treatment become available (14).

There are four critical time points when the need for DSMES should be evaluated by the medical care provider and/or multidisciplinary team, with referrals made as needed (2):

2. Annually and/or when not meeting treatment targets

- When complicating factors (health conditions, physical limitations, emotional factors, or basic living needs) develop that influence self-management
- 4. When transitions in life and care occur

DSMES focuses on supporting patient empowerment by providing people with diabetes the tools to make informed self-management decisions (15). Diabetes care requires an approach that places the person with diabetes and their family and/or support system at the center of the care model, working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual preferences, needs, and values. It ensures that patient values guide all decisionmaking (16).

Evidence for the Benefits

Studies have found that DSMES is associated with improved diabetes knowledge and self-care behaviors (16,17), lower A1C (16,18-21), lower self-reported weight (22), improved quality of life (19,23), reduced all-cause mortality risk (24), positive coping behaviors (5,25), and reduced health care costs (26-28). Better outcomes were reported for DSMES interventions that were more than 10 h over the course of 6-12 months (20), included ongoing support (14,29), were culturally (30,31) and age appropriate (32,33), were tailored to individual needs and preferences, and addressed psychosocial issues and incorporated behavioral strategies (15,25,34,35). Individual and group approaches are effective (36,37), with a slight benefit realized by those who engage in both (20).

Emerging evidence demonstrates the benefit of telemedicine or internetbased DSMES services for diabetes prevention and the management of type 2 diabetes (38–45).

Technologies such as mobile apps, simulation tools, digital coaching, and digital self-management interventions can be used to deliver DSMES (46,47). These methods provide comparable or even improved outcomes compared with traditional in-person care (48). Greater A1C reductions are demonstrated with increased patient engagement (49), although data from trials is preliminary in nature and quite heterogeneous.

^{1.} At diagnosis

Technology-enabled diabetes selfmanagement solutions improve A1C most effectively when there is two-way communication between the patient and the health care team, individualized feedback, use of patient-generated health data, and education (40). Incorporating a systematic approach for technology assessment, adoption, and integration into the care plan may help ensure equity in access and standardized application of technology-enabled solutions (8,50–53).

Current research supports diabetes care and education specialists including nurses, dietitians, and pharmacists as providers of DSMES who may also tailor curriculum to the person's needs (54-56). Members of the DSMES team should have specialized clinical knowledge in diabetes and behavior change principles. In addition, a diabetes care and education specialist needs to be knowledgeable about technology-enabled services and may serve as a technology champion within their practice (50). Certification as a diabetes care and education specialist (see www.cbdce.org/) and/or board certification in advanced diabetes management (see www.diabeteseducator.org/ education/certification/bc_adm) demonstrates an individual's specialized training in and understanding of diabetes management and support (13), and engagement with qualified providers has been shown to improve disease-related outcomes. Additionally, there is growing evidence for the role of community health workers (57,58), as well as peer (57-62) and lay leaders (63), in providing ongoing support.

Evidence suggests people with diabetes who completed more than 10 h of DSMES over the course of 6-12 months and those who participated on an ongoing basis had significant reductions in mortality (24) and A1C (decrease of 0.57%) (20) compared with those who spent less time with a diabetes care and education specialist. Given individual needs and access to resources, a variety of culturally adapted DSMES programs need to be offered in a variety of settings. Use of technology to facilitate access to DSMES services, support selfmanagement decisions, and decrease therapeutic inertia suggests that these approaches need broader adoption.

DSMES is associated with an increased use of primary care and preventive services (26,52,64) and less frequent use of acute care and inpatient hospital services (22). Patients who participate in DSMES are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and insurance claim costs (27,64). Despite these benefits, reports indicate that only 5-7% of individuals eligible for DSMES through Medicare or a private insurance plan actually receive it (65,66). Barriers to DSMES exist at the health system, payer, provider, and patient levels. This low participation may be due to lack of referral or other identified barriers such as logistical issues (accessibility, timing, costs) and the lack of a perceived benefit (66). Health system, programmatic, and payer barriers include lack of administrative leadership support, limited numbers of DSMES providers, not having referral to DSMES services effectively embedded in the health system service structure, and limited reimbursement rates (67). Thus, in addition to educating referring providers about the benefits of DSMES and the critical times to refer, efforts need to be made to identify and address all of the various potential barriers (2). Alternative and innovative models of DSMES delivery (47) need to be explored and evaluated, including the integration of technology-enabled diabetes and cardiometabolic health services (8,50).

Reimbursement

Medicare reimburses DSMES when that service meets the national standards (2,13) and is recognized by the American Diabetes Association (ADA) through the Education Recognition Program (https:// professional.diabetes.org/diabetes-education) or Association of Diabetes Care & Education Specialists. DSMES is also covered by most health insurance plans. Ongoing support has been shown to be instrumental for improving outcomes when it is implemented after the completion of education services. DSMES is frequently reimbursed when performed in person. However, although DSMES can also be provided via phone calls and telehealth, these remote versions may not always be reimbursed. Some barriers to DSMES access may be mitigated through telemedicine approaches.

Changes in reimbursement policies that increase DSMES access and utilization will result in a positive impact to beneficiaries' clinical outcomes, quality of life, health care utilization, and costs (68– 70). During the time of the coronavirus disease 2019 (COVID-19) pandemic, reimbursement policies have changed (professional.diabetes.org/content-page/ dsmes-and-mnt-during-covid-19-nationalpandemic), and these changes may provide a new reimbursement paradigm for future provision of DSMES through telehealth channels.

MEDICAL NUTRITION THERAPY

Please refer to the ADA consensus report "Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report" for more information on nutrition therapy (56). For many individuals with diabetes, the most challenging part of the treatment plan is determining what to eat. There is not a "one-size-fitsall" eating pattern for individuals with diabetes, and meal planning should be individualized. Nutrition therapy plays an integral role in overall diabetes management, and each person with diabetes should be actively engaged in education, self-management, and treatment planning with his or her health care team, including the collaborative development of an individualized eating plan (56,71). All providers should refer people with diabetes for individualized MNT provided by a registered dietitian nutritionist (RD/RDN) who is knowledgeable and skilled in providing diabetes-specific MNT (72) at diagnosis and as needed throughout the life span, similar to DSMES. MNT delivered by an RD/RDN is associated with A1C absolute decreases of 1.0-1.9% for people with type 1 diabetes (73) and 0.3-2.0% for people with type 2 diabetes (73). See Table 5.1 for specific nutrition recommendations. Because of the progressive nature of type 2 diabetes, behavior modification alone may not be adequate to maintain euglycemia over time. However, after medication is initiated, nutrition therapy continues to be an important component, and RD/RDNs providing MNT in diabetes care should assess and monitor medication changes in relation to the nutrition care plan (56,71).

Торіс	Recommendation
Effectiveness of nutrition therapy	 5.9 An individualized medical nutrition therapy program as needed to achieve treatment goals, provided by a registered dietitian nutritionist (RD/RDN), preferably one who has comprehensive knowledge and experience in diabetes care, is recommended for all people with type 1 or type 2 diabetes, prediabetes, and gestational diabetes mellitus. <i>J</i> 5.10 Because diabetes medical nutrition therapy can result in cost savings B and improved outcomes (e.g., A1C reduction, reduced weight, decrease in cholesterol) A, medical nutrition therapy should be adequately reimbursed by insurance and other payers. E
Energy balance	5.11 For all patients with overweight or obesity, behavioral modification to achieve and maintain a minimum weight loss of 5% is recommended. A
Eating patterns and macronutrient distribution	 5.12 There is no ideal macronutrient pattern for people with diabetes; meal plans should be individualized while keeping total calorie and metabolic goals in mind. E 5.13 A variety of eating patterns can be considered for the management of type 2 diabetes and to prevent diabetes in individuals with prediabetes. B 5.14 Reducing overall carbohydrate intake for individuals with diabetes has demonstrated the most evidence for improving glycemia and may be applied in a variety of eating patterns that meet individual needs and preferences. B
Carbohydrates	 5.15 Carbohydrate intake should emphasize nutrient-dense carbohydrate sources that are high in fiber (at least 14 g fiber per 1,000 kcal) and minimally processed. Eating plans should emphasize nonstarchy vegetables, fruits, and whole grains, as well as dairy products, with minimal added sugars. B 5.16 People with diabetes and those at risk are advised to replace sugar-sweetened beverages (including fruit juices) with water as much as possible in order to control glycemia and weight and reduce their risk for cardiovascular disease and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices. A 5.17 When using a flexible insulin therapy program, education on the glycemic impact of carbohydrate A, fat, and protein B should be tailored to an individual's needs and preferences and used to optimize mealtime insulin dosing. 5.18 When using fixed insulin doses, individuals should be provided education about consistent pattern of carbohydrate intake with respect to time and amount, while considering the insulin action time, as it can result in improved glycemia and reduce the risk for hypoglycemia. B
Protein	5.19 In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should be avoided when trying to treat or prevent hypoglycemia. B
Dietary fat	 5.20 An eating plan emphasizing elements of a Mediterranean-style eating pattern rich in monounsaturated and polyunsaturated fats may be considered to improve glucose metabolism and lower cardiovascular disease risk. B 5.21 Eating foods rich in long-chain n-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA), is recommended to prevent or treat cardiovascular disease. B
Micronutrients and herbal supplements	5.22 There is no clear evidence that dietary supplementation with vitamins, minerals (such as chromium and vitamin D), herbs, or spices (such as cinnamon or aloe vera) can improve outcomes in people with diabetes who do not have underlying deficiencies, and they are not generally recommended for glycemic control. C
Alcohol	 5.23 Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men). C 5.24 Educating people with diabetes about the signs, symptoms, and self-management of delayed hypoglycemia after drinking alcohol, especially when using insulin or insulin secretagogues, is recommended. The importance of glucose monitoring after drinking alcoholic beverages to reduce hypoglycemia risk should be emphasized. B
Sodium	5.25 Sodium consumption should be limited to $<$ 2,300 mg/day. B
Nonnutritive sweeteners	5.26 The use of nonnutritive sweeteners as a replacement for sugar-sweetened products may reduce overall calorie and carbohydrate intake as long as there is not a compensatory increase of energy intake from other sources. Overall, people are encouraged to decrease both sweetened and nonnutritive-sweetened beverages, with an emphasis on water intake. B

Goals of Nutrition Therapy for Adults With Diabetes

- To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portion sizes, to improve overall health and:
 - achieve and maintain body weight goals
 - attain individualized glycemic, blood pressure, and lipid goals
 - delay or prevent the complications of diabetes
- To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful foods, willingness and ability to make behavioral changes, and existing barriers to change
- To maintain the pleasure of eating by providing nonjudgmental messages about food choices while limiting food choices only when indicated by scientific evidence
- 4. To provide an individual with diabetes the practical tools for developing healthy eating patterns rather than focusing on individual macronutrients, micronutrients, or single foods

Weight Management

Management and reduction of weight is important for people with type 1 diabetes, type 2 diabetes, or prediabetes with overweight or obesity. To support weight loss and improve A1C, cardiovascular disease (CVD) risk factors, and well-being in adults with overweight/obesity and prediabetes or diabetes, MNT and DSMES services should include an individualized eating plan in a format that results in an energy deficit in combination with enhanced physical activity (56). Lifestyle intervention programs should be intensive and have frequent follow-up to achieve significant reductions in excess body weight and improve clinical indicators. There is strong and consistent evidence that modest, sustained weight loss can delay the progression from prediabetes to type 2 diabetes (73-75) (see Section 3, "Prevention or Delay of Type 2 Diabetes and Associated Comorbidities," https://doi.org/10.2337/dc22-S003) and is beneficial for the management of type 2 diabetes (see Section 8, "Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes," https: //doi.org/10.2337/dc22-S008).

In prediabetes, the weight loss goal is 7-10% for preventing progression to type 2 diabetes (76). In conjunction with support for healthy lifestyle behaviors, medication-assisted weight loss can be considered for people at risk for type 2 diabetes when needed to achieve and sustain 7-10% weight loss (77,78) (see Section 8, "Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes," https://doi.org/ 10.2337/dc22-S008). People with prediabetes at a healthy weight should also be considered for behavioral interventions to help establish routine aerobic and resistance exercise (76,79,80), as well as to establish healthy eating patterns. Services delivered by practitioners familiar with diabetes and its management, such as an RD/RDN, have been found to be effective (72).

For many individuals with overweight and obesity with type 2 diabetes, 5% weight loss is needed to achieve beneficial outcomes in glycemic control, lipids, and blood pressure (81). It should be noted, however, that the clinical benefits of weight loss are progressive, and more intensive weight loss goals (i.e., 15%) may be appropriate to maximize benefit depending on need, feasibility, and safety (82,83). In select individuals with type 2 diabetes, an overall healthy eating plan that results in energy deficit in conjunction with weight loss medications and/or metabolic surgery should be considered to help achieve weight loss and maintenance goals, lower A1C, and reduce CVD risk (77,84,85). Overweight and obesity are also increasingly prevalent in people with type 1 diabetes and present clinical challenges regarding diabetes treatment and CVD risk factors (86,87). Sustaining weight loss can be challenging (81,88) but has long-term benefits; maintaining weight loss for 5 years is associated with sustained improvements in A1C and lipid levels (89). MNT guidance from an RD/ RDN with expertise in diabetes and weight management, throughout the course of a structured weight loss plan, is strongly recommended.

Along with routine medical management visits, people with diabetes and prediabetes should be screened during DSMES and MNT encounters for a history of dieting and past or current disordered eating behaviors. Nutrition therapy should be individualized to help address maladaptive eating behavior (e.g., purging) or compensatory changes in medical regimen (e.g., overtreatment of hypoglycemic episodes, reduction in medication dosing to reduce hunger) (56) (see disordered eating behavior below). Disordered eating and/or eating disorders can increase challenges for weight and diabetes management. For example, caloric restriction may be essential for glycemic control and weight maintenance, but rigid meal plans may be contraindicated for individuals who are at increased risk of clinically significant maladaptive eating behaviors (90). If clinically significant eating disorders are identified during screening with diabetes-specific questionnaires, individuals should be referred to a mental health professional as needed (1).

Studies have demonstrated that a variety of eating plans, varying in macronutrient composition, can be used effectively and safely in the short term (1-2 years) to achieve weight loss in people with diabetes. These plans include structured low-calorie meal plans with meal replacements (82,89,91), a Mediterranean-style eating pattern (92), and lowcarbohydrate meal plans with additional support (93,94). However, no single approach has been proven to be consistently superior (56,95-97), and more data are needed to identify and validate those meal plans that are optimal with respect to long-term outcomes and patient acceptability. The importance of providing guidance on an individualized meal plan containing nutrient-dense foods, such as vegetables, fruits, legumes, dairy, lean sources of protein (including plant-based sources as well as lean meats, fish, and poultry), nuts, seeds, and whole grains, cannot be overemphasized (96), as well as guidance on achieving the desired energy deficit (98-101). Any approach to meal planning should be individualized considering the health status, personal preferences, and ability of the person with diabetes to sustain the recommendations in the plan.

Eating Patterns and Meal Planning

Evidence suggests that there is not an ideal percentage of calories from carbohydrate, protein, and fat for people with diabetes. Therefore, macronutrient distribution should be based on an individualized assessment of current eating patterns, preferences, and metabolic goals. Dietary guidance should emphasize the importance of a healthy dietary pattern as a whole rather than focusing on individual nutrients, foods, or food groups, given that individuals rarely eat foods in isolation. Personal preferences (e.g., tradition, culture, religion, health beliefs and goals, economics) as well as metabolic goals need to be considered when working with individuals to determine the best eating pattern for them (56, 73,102). Members of the health care team should complement MNT by providing evidence-based guidance that helps people with diabetes make healthy food choices that meet their individualized needs and improve overall health. A variety of eating patterns are acceptable for the management of diabetes (56,103-105). Until the evidence surrounding comparative benefits of different eating patterns in specific individuals strengthens, health care providers should focus on the key factors that are common among the patterns: 1) emphasize nonstarchy vegetables, 2) minimize added sugars and refined grains, and 3) choose whole foods over highly processed foods to the extent possible (56). An individualized eating pattern also considers the individual's health status, food and numeracy skills, resources, food preferences, and health goals. Referral to an RD/RDN is essential to assess the overall nutrition status of, and to work collaboratively with, the patient to create a personalized meal plan that coordinates and aligns with the overall treatment plan, including physical activity and medication use. The Mediterraneanstyle (102,106–108), low-carbohydrate (109-111), and vegetarian or plant-based (107,108,112,113) eating patterns are all examples of healthful eating patterns that have shown positive results in research for individuals with type 2 diabetes, but individualized meal planning should focus on personal preferences, needs, and goals. There is currently inadequate research in type 1 diabetes to support one eating pattern over another.

For individuals with type 2 diabetes not meeting glycemic targets or for whom reducing glucose-lowering drugs is a priority, reducing overall carbohydrate intake with a low- or very-low-carbohydrate eating pattern is a viable option (109–111). As research studies on lowcarbohydrate eating plans generally indicate challenges with long-term sustainability (114), it is important to reassess and individualize meal plan guidance regularly for those interested in this approach. Most individuals with diabetes report a moderate intake of carbohydrate (44-46% of total calories) (103). Efforts to modify habitual eating patterns are often unsuccessful in the long term; people generally go back to their usual macronutrient distribution (103). Thus, the recommended approach is to individualize meal plans with a macronutrient distribution that is more consistent with personal preference and usual intake to increase the likelihood for long-term maintenance.

An RCT found that two meal planning approaches were effective in helping achieve improved A1C, particularly for individuals with an A1C between 7% and 10% (115). The diabetes plate method is a commonly used visual approach for providing basic meal planning guidance. This simple graphic (featuring a 9-inch plate) shows how to portion foods (1/2 of the plate for nonstarchy vegetables, 1/ 4 of the plate for protein, and 1/4 of the plate for carbohydrates). Carbohydrate counting is a more advanced skill that helps plan for and track how much carbohydrate is consumed at meals and snacks. Meal planning approaches should be customized to the individual, including their numeracy (115) and food literacy level. Food literacy generally describes proficiency in food-related knowledge and skills that ultimately impact health, although specific definitions vary across initiatives (116,117).

Carbohydrates

Studies examining the ideal amount of carbohydrate intake for people with diabetes are inconclusive, although monitoring carbohydrate intake and considering the blood glucose response to dietary carbohydrate are key for improving postprandial glucose management (118, 119). The literature concerning glycemic index and glycemic load in individuals with diabetes is complex, often with varying definitions of low and high glycemic index foods (120,121). The glycemic index ranks carbohydrate foods on their postprandial glycemic response, and glycemic load takes into account both the glycemic index of foods and the amount of carbohydrate eaten. Studies have found mixed results regarding the effect of glycemic index and glycemic load on fasting glucose levels and A1C, with one systematic review finding no significant impact on A1C (122), while two others demonstrated A1C reductions of 0.15% (120) to 0.5% (123).

Reducing overall carbohydrate intake for individuals with diabetes has demonstrated evidence for improving glycemia and may be applied in a variety of eating patterns that meet individual needs and preferences (56). For people with type 2 diabetes, low-carbohydrate and very-lowcarbohydrate eating patterns, in particular, have been found to reduce A1C and the need for antihyperglycemic medications (56,102,114,124-126). Systematic reviews and meta-analyses of RCTs found carbohydrate-restricted eating patterns, particularly those considered low-carbohydrate (<26% total energy), were effective in reducing A1C in the short term (<6 months), with less difference in eating patterns beyond 1 year (97,98,109, 110,125). Part of the challenge in interpreting low-carbohydrate research has been due to the wide range of definitions for a low-carbohydrate eating plan (111,123). Weight reduction was also a goal in many low-carbohydrate studies, which further complicates evaluating the distinct contribution of the eating pattern (41,93,97,127). As research studies on low-carbohydrate eating plans generally indicate challenges with long-term sustainability (114), it is important to reassess and individualize meal plan guidance regularly for those interested in this approach. Providers should maintain consistent medical oversight and recognize that insulin and other diabetes medications may need to be adjusted to prevent hypoglycemia; and blood pressure will need to be monitored. In addition, verylow-carbohydrate eating plans are not currently recommended for women who are pregnant or lactating, children, people who have renal disease, or people with or at risk for disordered eating, and these plans should be used with caution in those taking sodium-glucose cotransporter 2 inhibitors because of the potential risk of ketoacidosis (128,129).

Regardless of amount of carbohydrate in the meal plan, focus should be placed on high-quality, nutrient-dense carbohydrate sources that are high in fiber and minimally processed. Both children and adults with diabetes are encouraged to minimize intake of refined carbohydrates with added sugars, fat, and sodium and instead focus on carbohydrates from vegetables, legumes, fruits, dairy (milk and yogurt), and whole grains. People with diabetes and those at risk for diabetes are encouraged to consume a minimum of 14 g of fiber/1,000 kcal, with at least half of grain consumption being whole, intact grains, according to the Dietary Guidelines for Americans (130). Regular intake of sufficient dietary fiber is associated with lower all-cause mortality in people with diabetes (131,132), and prospective cohort studies have found dietary fiber intake is inversely associated with risk of type 2 diabetes (133-135). The consumption of sugarsweetened beverages and processed food products with high amounts of refined grains and added sugars is strongly discouraged (130,136-138), as these have the capacity to displace healthier, more nutrient-dense food choices.

Individuals with type 1 or type 2 diabetes taking insulin at mealtime should be offered intensive and ongoing education on the need to couple insulin administration with carbohydrate intake. For people whose meal schedule or carbohydrate consumption is variable, regular education to increase understanding of the relationship between carbohydrate intake and insulin needs is important. In addition, education on using insulin-tocarbohydrate ratios for meal planning can assist individuals with effectively modifying insulin dosing from meal to meal to improve glycemic management (103,118,139-142). When consuming a mixed meal that contains carbohydrate and is high in fat and/or protein, insulin dosing should not be based solely on carbohydrate counting (56). Studies have shown that dietary fat and protein can impact early and delayed postprandial glycemia (143-146), and it appears to have a dose-dependent response (147-149). Results from high-fat, high-protein meal studies highlight the need for additional insulin to cover these meals; however, more studies are needed to determine the optimal insulin dose and delivery strategy. The results from these studies also point to individual differences in postprandial glycemic response; therefore, a cautious approach to increasing insulin doses for high-fat and/or high-protein mixed meals is recommended to address delayed hyperglycemia that may

occur 3 h or more after eating (56). If using an insulin pump, a split bolus feature (part of the bolus delivered immediately, the remainder over a programmed duration of time) may provide better insulin coverage for high-fat and/or highprotein mixed meals (144,150).

The effectiveness of insulin dosing decisions should be confirmed with a structured approach to blood glucose monitoring or continuous glucose monitoring to evaluate individual responses and guide insulin dose adjustments. Checking glucose 3 h after eating may help to determine if additional insulin adjustments are required (i.e., increasing or stopping bolus) (144,150,151). Refining insulin doses to account for high-fat and/or -protein meals requires determination of anticipated nutrient intake to calculate the mealtime dose. Food literacy, numeracy, interest, and capability should be evaluated (56). For individuals on a fixed daily insulin schedule, meal planning should emphasize a relatively fixed carbohydrate consumption pattern with respect to both time and amount, while considering insulin action. Attention to resultant hunger and satiety cues will also help with nutrient modifications throughout the day (56,152).

Protein

There is no evidence that adjusting the daily level of protein intake (typically 1–1.5 g/kg body wt/day or 15–20% total calories) will improve health, and research is inconclusive regarding the ideal amount of dietary protein to optimize either glycemic management or CVD risk (121,153). Therefore, protein intake goals should be individualized based on current eating patterns. Some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety (154).

Historically, low-protein eating plans were advised for individuals with diabetic kidney disease (DKD) (with albuminuria and/or reduced estimated glomerular filtration rate); however, new evidence does not suggest that people with DKD need to restrict protein to less than the generally recommended protein intake (56). Reducing the amount of dietary protein below the recommended daily allowance of 0.8 g/kg is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the rate at which glomerular filtration rate declines and may increase risk for malnutrition (155,156).

In individuals with type 2 diabetes, protein intake may enhance or increase the insulin response to dietary carbohydrates (157). Therefore, use of carbohydrate sources high in protein (such as milk and nuts) to treat or prevent hypoglycemia should be avoided due to the potential concurrent rise in endogenous insulin. Providers should counsel patients to treat hypoglycemia with pure glucose (i.e., glucose tablets) or carbohydrate-containing foods at the hypoglycemia alert value of <70 mg/dL. See Section 6, "Glycemic Targets" (https://doi.org/10.2337/dc22-S006), for more information.

Fats

The ideal amount of dietary fat for individuals with diabetes is controversial. New evidence suggests that there is not an ideal percentage of calories from fat for people with or at risk for diabetes and that macronutrient distribution should be individualized according to the patient's eating patterns, preferences, and metabolic goals (56). The type of fats consumed is more important than total amount of fat when looking at metabolic goals and CVD risk, and it is recommended that the percentage of total calories from saturated fats should be limited (92,130,158-160). Multiple RCTs including patients with type 2 diabetes have reported that a Mediterranean-style eating pattern (92,161-166), rich in polyunsaturated and monounsaturated fats, can improve both glycemic management and blood lipids.

Evidence does not conclusively support recommending n-3 (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) supplements for all people with diabetes for the prevention or treatment of cardiovascular events (56,167,168). In individuals with type 2 diabetes, two systematic reviews with n-3 and n-6 fatty acids concluded that the dietary supplements did not improve glycemic management (121,169). In the ASCEND trial (A Study of Cardiovascular Events iN Diabetes), when compared with placebo, supplementation with n-3 fatty acids at the dose of 1 g/day did not lead to cardiovascular benefit in people with diabetes without evidence of CVD (170). However, results from the Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial (REDUCE-IT) did find that supplementation with 4 g/day of pure EPA significantly lowered the risk of adverse cardiovascular events. This trial of 8,179 participants, in which over 50% had diabetes, found a 5% absolute reduction in cardiovascular events for individuals with established atherosclerotic CVD taking a preexisting statin with residual hypertriglyceridemia (135-499 mg/dL) (171). See Section 10. "Cardiovascular Disease and Risk Management" (https:// doi.org/10.2337/dc22-S010), for more information. People with diabetes should be advised to follow the guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans fat (130). Trans fats should be avoided. In addition, as saturated fats are progressively decreased in the diet, they should be replaced with unsaturated fats and not with refined carbohydrates (165).

Sodium

As for the general population, people with diabetes are advised to limit their sodium consumption to <2,300 mg/day (56). Restriction to <1,500 mg, even for those with hypertension, is generally not recommended (172–174). Sodium recommendations should take into account palatability, availability, affordability, and the difficulty of achieving low-sodium recommendations in a nutritionally adequate diet (175).

Micronutrients and Supplements

There continues to be no clear evidence of benefit from herbal or nonherbal (i.e., vitamin or mineral) supplementation for people with diabetes without underlying deficiencies (56). Metformin is associated with vitamin B12 deficiency per a report from the Diabetes Prevention Program Outcomes Study (DPPOS), suggesting that periodic testing of vitamin B12 levels should be considered in patients taking metformin, particularly in those with anemia or peripheral neuropathy (176). Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised due to lack of evidence of efficacy and concern related to longterm safety. In addition, there is insufficient evidence to support the routine use of herbal supplements and micronutrients, such as cinnamon (177), curcumin, vitamin D (178), aloe vera, or chromium, to improve glycemia in people with diabetes (56,179).

Although the Vitamin D and Type 2 Diabetes (D2d) prospective RCT showed no significant benefit of vitamin D versus placebo on the progression to type 2 diabetes in individuals at high risk (180), post hoc analyses and meta-analyses suggest a potential benefit in specific populations (180–183). Further research is needed to define patient characteristics and clinical indicators where vitamin D supplementation may be of benefit.

For special populations, including pregnant or lactating women, older adults, vegetarians, and people following verylow-calorie or low-carbohydrate diets, a multivitamin may be necessary.

Alcohol

Moderate alcohol intake does not have major detrimental effects on long-term blood glucose management in people with diabetes. Risks associated with alcohol consumption include hypoglycemia and/or delayed hypoglycemia (particularly for those using insulin or insulin secretagogue therapies), weight gain, and hyperglycemia (for those consuming excessive amounts) (56,179). People with diabetes should be educated about these risks and encouraged to monitor blood glucose frequently after drinking alcohol to minimize such risks. People with diabetes can follow the same guidelines as those without diabetes if they choose to drink. For women, no more than one drink per day, and for men, no more than two drinks per day is recommended (one drink is equal to a 12-oz beer, a 5-oz glass of wine, or 1.5 oz of distilled spirits).

Nonnutritive Sweeteners

The U.S. Food and Drug Administration has approved many nonnutritive sweeteners for consumption by the general public, including people with diabetes (56,184). For some people with diabetes who are accustomed to regularly consuming sugar-sweetened products, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for nutritive sweeteners (those containing calories, such as sugar, honey, and agave syrup) when consumed in moderation (185,186). Nonnutritive sweeteners do not appear to have a significant effect on glycemic management (103,187,188), but they can reduce overall calorie and carbohydrate intake (103,185) as long as individuals are not compensating with additional calories from other food sources (56,189). There is mixed evidence from systematic reviews and meta-analyses for nonnutritive sweetener use with regard to weight management, with some finding benefit in weight loss (190-192), while other research suggests an association with weight gain (193). The addition of nonnutritive sweeteners to diets poses no benefit for weight loss or reduced weight gain without energy restriction (194). Low-calorie or nonnutritive-sweetened beverages may serve as a short-term replacement strategy; however, people with diabetes should be encouraged to decrease both sweetened and nonnutritive-sweetened beverages, with an emphasis on water intake (186). Additionally, some research has found that higher nonnutritive-sweetened beverage and sugar-sweetened beverage consumption may be associated with the development of type 2 diabetes, although substantial heterogeneity makes interpreting the results difficult (195-198).

PHYSICAL ACTIVITY

Recommendations

- 5.27 Children and adolescents with type 1 or type 2 diabetes or prediabetes should engage in 60 min/day or more of moderateor vigorous-intensity aerobic activity, with vigorous musclestrengthening and bone-strengthening activities at least 3 days/ week. C
- 5.28 Most adults with type 1 C and type 2 B diabetes should engage in 150 min or more of moderate- to vigorous-intensity aerobic activity per week, spread over at least 3 days/week, with no more than 2 consecutive days without activity. Shorter durations (minimum 75 min/ week) of vigorous-intensity or interval training may be

sufficient for younger and more physically fit individuals.

- 5.29 Adults with type 1 C and type
 2 B diabetes should engage in
 2-3 sessions/week of resistance exercise on nonconsecutive days.
- 5.30 All adults, and particularly those with type 2 diabetes, should decrease the amount of time spent in daily sedentary behavior. B Prolonged sitting should be interrupted every 30 min for blood glucose benefits. C
- 5.31 Flexibility training and balance training are recommended 2–3 times/week for older adults with diabetes. Yoga and tai chi may be included based on individual preferences to increase flexibility, muscular strength, and balance. C
- 5.32 Evaluate baseline physical activity and sedentary time. Promote increase in nonsedentary activities above baseline for sedentary individuals with type 1 E and type 2 B diabetes. Examples include walking, yoga, housework, gardening, swimming, and dancing.

Physical activity is a general term that includes all movement that increases energy use and is an important part of the diabetes management plan. Exercise is a more specific form of physical activity that is structured and designed to improve physical fitness. Both physical activity and exercise are important. Exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being (199). Physical activity is as important for those with type 1 diabetes as it is for the general population, but its specific role in the prevention of diabetes complications and the management of blood glucose is not as clear as it is for those with type 2 diabetes. A recent study suggested that the percentage of people with diabetes who achieved the recommended exercise level per week (150 min) varied by race. Objective measurement by accelerometer showed that 44.2%, 42.6%, and 65.1% of Whites, African Americans, and Hispanics, respectively, met the threshold

(200). It is important for diabetes care management teams to understand the difficulty that many patients have reaching recommended treatment targets and to identify individualized approaches to improve goal achievement.

Moderate to high volumes of aerobic activity are associated with substantially lower cardiovascular and overall mortality risks in both type 1 and type 2 diabetes (201). A recent prospective observational study of adults with type 1 diabetes suggested that higher amounts of physical activity led to reduced cardiovascular mortality after a mean followup time of 11.4 years for patients with and without chronic kidney disease (202). Additionally, structured exercise interventions of at least 8 weeks' duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even without a significant change in BMI (203). There are also considerable data for the health benefits (e.g., increased cardiovascular fitness, greater muscle strength, improved insulin sensitivity, etc.) of regular exercise for those with type 1 diabetes (204). A recent study suggested that exercise training in type 1 diabetes may also improve several important markers such as triglyceride level, LDL, waist circumference, and body mass (205). In adults with type 2 diabetes, higher levels of exercise intensity are associated with greater improvements in A1C and in cardiorespiratory fitness (206); sustained improvements in cardiorespiratory fitness and weight loss have also been associated with a lower risk of heart failure (207). Other benefits include slowing the decline in mobility among overweight patients with diabetes (208). The ADA position statement "Physical Activity/Exercise and Diabetes" reviews the evidence for the benefits of exercise in people with type 1 and type 2 diabetes and offers specific recommendations (209). Increased physical activity (soccer training) has also been shown to be beneficial for improving overall fitness in Latino men with obesity, demonstrating feasible methods to increase physical activity in an often hard-to-engage population (210). Physical activity and exercise should be recommended and prescribed to all individuals who are at risk for or with diabetes as part of management of glycemia and overall health. Specific recommendations and precautions will vary

by the type of diabetes, age, activity done, and presence of diabetes-related health complications. Recommendations should be tailored to meet the specific needs of each individual (209).

Exercise and Children

All children, including children with diabetes or prediabetes, should be encouraged to engage in regular physical activity. Children should engage in at least 60 min of moderate to vigorous aerobic activity every day, with muscleand bone-strengthening activities at least 3 days per week (211). In general, youth with type 1 diabetes benefit from being physically active, and an active lifestyle should be recommended to all (212). Youth with type 1 diabetes who engage in more physical activity may have better health outcomes and health-related quality of life (213,214).

Frequency and Type of Physical Activity

People with diabetes should perform aerobic and resistance exercise regularly (209). Aerobic activity bouts should ideally last at least 10 min, with the goal of \sim 30 min/day or more most days of the week for adults with type 2 diabetes. Daily exercise, or at least not allowing more than 2 days to elapse between exercise sessions, is recommended to decrease insulin resistance, regardless of diabetes type (215,216). A study in adults with type 1 diabetes found a dose-response inverse relationship between self-reported bouts of physical activity per week and A1C, BMI, hypertension, dyslipidemia, and diabetesrelated complications such as hypoglycemia, diabetic ketoacidosis, retinopathy, and microalbuminuria (217). Over time, activities should progress in intensity, frequency, and/or duration to at least 150 min/week of moderate-intensity exercise. Adults able to run at 6 miles/h (9.7 km/ h) for at least 25 min can benefit sufficiently from shorter-intensity activity (75 min/week) (209). Many adults, including most with type 2 diabetes, may be unable or unwilling to participate in such intense exercise and should engage in moderate exercise for the recommended duration. Adults with diabetes should engage in 2-3 sessions/week of resistance exercise on nonconsecutive days (218). Although heavier resistance training with free weights and weight machines may improve glycemic control and strength (219), resistance training of any intensity is recommended to improve strength, balance, and the ability to engage in activities of daily living throughout the life span. Providers and staff should help patients set stepwise goals toward meeting the recommended exercise targets. As individuals intensify their exercise program, medical monitoring may be indicated to ensure safety and evaluate the effects on glucose management. (See the section PHYSICAL ACTIVITY AND GLYCEMIC CONTROL below.)

Recent evidence supports that all individuals, including those with diabetes, should be encouraged to reduce the amount of time spent being sedentary—waking behaviors with low energy expenditure (e.g., working at a computer, watching television)-by breaking up bouts of sedentary activity (>30 min) by briefly standing, walking, or performing other light physical activities (220,221). Participating in leisure-time activity and avoiding extended sedentary periods may help prevent type 2 diabetes for those at risk (222,223) and may also aid in glycemic control for those with diabetes.

A systematic review and meta-analysis found higher frequency of regular leisure-time physical activity was more effective in reducing A1C levels (224). A wide range of activities, including yoga, tai chi, and other types, can have significant impacts on A1C, flexibility, muscle strength, and balance (199,225–227). Flexibility and balance exercises may be particularly important in older adults with diabetes to maintain range of motion, strength, and balance (209).

Physical Activity and Glycemic Control

Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (228) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (229). If not contraindicated, patients with type 2 diabetes should be encouraged to do at least two weekly sessions of resistance exercise (exercise with free weights or weight machines), with each session consisting of at least one set (group of consecutive repetitive exercise motions) of five or more different resistance exercises involving the large muscle groups (228).

For type 1 diabetes, although exercise in general is associated with improvement in disease status, care needs to be taken in titrating exercise with respect to glycemic management. Each individual with type 1 diabetes has a variable glycemic response to exercise. This variability should be taken into consideration when recommending the type and duration of exercise for a given individual (204).

Women with preexisting diabetes, particularly type 2 diabetes, and those at risk for or presenting with gestational diabetes mellitus should be advised to engage in regular moderate physical activity prior to and during their pregnancies as tolerated (209).

Pre-exercise Evaluation

As discussed more fully in Section 10, "Cardiovascular Disease and Risk Management" (https://doi.org/10.2337/ dc22-S010), the best protocol for assessing asymptomatic patients with diabetes for coronary artery disease remains unclear. The ADA consensus report "Screening for Coronary Artery Disease in Patients With Diabetes" (230) concluded that routine testing is not recommended. However, providers should perform a careful history, assess cardiovascular risk factors, and be aware of the atypical presentation of coronary artery disease, such as recent patient-reported or tested decrease in exercise tolerance, in patients with diabetes. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and slowly increase the intensity and duration as tolerated. Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, untreated proliferative retinopathy, autonomic neuropathy, peripheral neuropathy, and a history of foot ulcers or Charcot foot. The patient's age and previous physical activity level should be considered when customizing the exercise regimen to the individual's needs. Those with complications may need a more thorough evaluation prior to starting an exercise program (204, 231).

Hypoglycemia

In individuals taking insulin and/or insulin secretagogues, physical activity may cause hypoglycemia if the medication dose or carbohydrate consumption is not adjusted for the exercise bout and postbout impact on glucose. Individuals on these therapies may need to ingest some added carbohydrate if pre-exercise glucose levels are <90 mg/dL (5.0 mmol/L), depending on whether they are able to lower insulin doses during the workout (such as with an insulin pump or reduced pre-exercise insulin dosage), the time of day exercise is done, and the intensity and duration of the activity (204,231). In some patients, hypoglycemia after exercise may occur and last for several hours due to increased insulin sensitivity. Hypoglycemia is less common in patients with diabetes who are not treated with insulin or insulin secretagogues, and no routine preventive measures for hypoglycemia are usually advised in these cases. Intense activities may actually raise blood glucose levels instead of lowering them, especially if pre-exercise glucose levels are elevated (204). Because of the variation in glycemic response to exercise bouts, patients need to be educated to check blood glucose levels before and after periods of exercise and about the potential prolonged effects (depending on intensity and duration) (see the section diabetes self-management education and SUPPORT above).

Exercise in the Presence of Microvascular Complications

See Section 11, "Chronic Kidney Disease and Risk Management" (https://doi .org/10.2337/dc22-S011), and Section 12, "Retinopathy, Neuropathy, and Foot Care" (https://doi.org/10.2337/dc22-S012), for more information on these long-term complications.

Retinopathy

If proliferative diabetic retinopathy or severe nonproliferative diabetic retinopathy is present, then vigorous-intensity aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (232). Consultation with an ophthalmologist prior to engaging in an intense exercise regimen may be appropriate.

Peripheral Neuropathy

Decreased pain sensation and a higher pain threshold in the extremities can result in an increased risk of skin breakdown, infection, and Charcot joint destruction with some forms of exercise. Therefore, a thorough assessment should be done to ensure that neuropathy does not alter kinesthetic or proprioceptive sensation during physical activity, particularly in those with more severe neuropathy. Studies have shown that moderateintensity walking may not lead to an increased risk of foot ulcers or reulceration in those with peripheral neuropathy who use proper footwear (233). In addition, 150 min/week of moderate exercise was reported to improve outcomes in patients with prediabetic neuropathy (234). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non-weight-bearing activities.

Autonomic Neuropathy

Autonomic neuropathy can increase the risk of exercise-induced injury or adverse events through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and greater susceptibility to hypoglycemia (235). Cardiovascular autonomic neuropathy is also an independent risk factor for cardiovascular death and silent myocardial ischemia (236). Therefore, individuals with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.

Diabetic Kidney Disease

Physical activity can acutely increase urinary albumin excretion. However, there is no evidence that vigorous-intensity exercise accelerates the rate of progression of DKD, and there appears to be no need for specific exercise restrictions for people with DKD in general (232).

SMOKING CESSATION: TOBACCO AND E-CIGARETTES

Recommendations

5.33 Advise all patients not to use cigarettes and other tobacco products or e-cigarettes. **A**

- **5.34** After identification of tobacco or e-cigarette use, include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. **A**
- 5.35 Address smoking cessation as part of diabetes education programs for those in need. B

Results from epidemiologic, case-control, and cohort studies provide convincing evidence to support the causal link between cigarette smoking and health risks (237). Recent data show tobacco use is higher among adults with chronic conditions (238) as well as in adolescents and young adults with diabetes (239). People with diabetes who smoke (and people with diabetes exposed to second-hand smoke) have a heightened risk of CVD, premature death, microvascular complications, and worse glycemic control when compared with those who do not smoke (240-242). Smoking may have a role in the development of type 2 diabetes (243-245).

The routine and thorough assessment of tobacco use is essential to prevent smoking or encourage cessation. Numerous large randomized clinical trials have demonstrated the efficacy and costeffectiveness of brief counseling in smoking cessation, including the use of telephone quit lines, in reducing tobacco use. Pharmacologic therapy to assist with smoking cessation in people with diabetes has been shown to be effective (246), and for the patient motivated to quit, the addition of pharmacologic therapy to counseling is more effective than either treatment alone (247). Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in guitting and relapse (248). Although some people may gain weight in the period shortly after smoking cessation (249), recent research has demonstrated that this weight gain does not diminish the substantial CVD benefit realized from smoking cessation (250). One study in people who smoke who had newly diagnosed type 2 diabetes found that smoking cessation was associated with amelioration of metabolic parameters and reduced blood pressure and albuminuria at 1 year (251).

In recent years, e-cigarettes have gained public awareness and popularity because of perceptions that e-cigarette use is less harmful than regular cigarette smoking (252,253). However, in light of recent Centers for Disease Control and Prevention evidence (254) of deaths related to e-cigarette use, no individuals should be advised to use e-cigarettes, either as a way to stop smoking tobacco or as a recreational drug.

Diabetes education programs offer potential to systematically reach and engage individuals with diabetes in smoking cessation efforts. A cluster randomized trial found statistically significant increases in quit rates and long-term abstinence rates (>6 months) when smoking cessation interventions were offered through diabetes education clinics, regardless of motivation to quit at baseline (255).

PSYCHOSOCIAL ISSUES

Recommendations

- 5.36 Psychosocial care should be integrated with a collaborative, patient-centered approach and provided to all people with diabetes, with the goals of optimizing health outcomes and health-related quality of life. A
- 5.37 Psychosocial screening and follow-up may include, but are not limited to, attitudes about diabetes, expectations for medical management and outcomes, affect or mood, general and diabetes-related quality of life, available resources (financial, social, and emotional), and psychiatric history. E
- 5.38 Providers should consider assessment for symptoms of diabetes distress, depression, anxiety, disordered eating, and cognitive capacities using age-appropriate standardized and validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. B
- 5.39 Consider screening older adults (aged ≥65 years) with diabetes for cognitive impairment and

depression. **B** Monitoring of cognitive capacity, i.e., the ability to actively engage in decision-making regarding regimen behaviors, is advised. **B**

Please refer to the ADA position statement "Psychosocial Care for People With Diabetes" for a list of assessment tools and additional details (1).

Complex environmental, social, behavioral, and emotional factors, known as psychosocial factors, influence living with diabetes, both type 1 and type 2, and achieving satisfactory medical outcomes and psychological well-being. Thus, individuals with diabetes and their families are challenged with complex, multifaceted issues when integrating diabetes care into daily life (142).

Emotional well-being is an important part of diabetes care and self-management. Psychological and social problems can impair the individual's (13,256-260) or family's (259) ability to carry out diabetes care tasks and therefore potentially compromise health status. There are opportunities for the clinician to routinely assess psychosocial status in a timely and efficient manner for referral to appropriate services (261,262). A systematic review and meta-analysis showed that psychosocial interventions modestly but significantly improved A1C (standardized mean difference -0.29%) and mental health outcomes (263). There was a limited association between the effects on A1C and mental health, and no intervention characteristics predicted benefit on both outcomes. However, cost analyses have shown that behavioral health interventions are both effective and cost-efficient approaches to the prevention of diabetes (264).

Screening

Key opportunities for psychosocial screening occur at diabetes diagnosis, during regularly scheduled management visits, during hospitalizations, with new onset of complications, during significant transitions in care such as from pediatric to adult care teams (265), or when problems with achieving A1C goals, quality of life, or self-management are identified (2). Patients are likely to exhibit psychological vulnerability at diagnosis, when their medical status changes (e.g., end of the honeymoon period), when the need for intensified treatment is evident, and when complications are discovered. Significant changes in life circumstances, often called social determinants of health, are known to considerably affect a person's ability to self-manage their condition. Thus, screening for social determinants of health (e.g., loss of employment, birth of a child, or other family-based stresses) should also be incorporated into routine care (266).

Providers can start with informal verbal inquires, for example, by asking whether there have been persistent changes in mood during the past 2 weeks or since the patient's last visit and whether the person can identify a triggering event or change in circumstances. Providers should also ask whether there are new or different barriers to treatment and self-management, such as feeling overwhelmed or stressed by having diabetes (see the section DIABETES DISTRESS below), changes in finances, or competing medical demands (e.g., the diagnosis of a comorbid condition). In circumstances where individuals other than the patient are significantly involved in diabetes management, these issues should be explored with nonmedical care providers (265). Standardized and validated tools for psychosocial monitoring and assessment can also be used by providers (1), with positive findings leading to referral to a mental health provider specializing in diabetes for comprehensive evaluation, diagnosis, and treatment.

Diabetes Distress

- Recommendation
- 5.40 Routinely monitor people with diabetes for diabetes distress, particularly when treatment targets are not met and/or at the onset of diabetes complications. B

Diabetes distress is very common and is distinct from other psychological disorders (259,267,268). Diabetes distress refers to significant negative psychological reactions related to emotional burdens and worries specific to an individual's experience in having to manage a severe, complicated, and demanding chronic disease such as diabetes (267–269). The constant behavioral demands of diabetes self-management (medication dosing, frequency, and titration; monitoring of blood glucose, food intake, eating patterns, and physical activity) and the potential or actuality of disease progression are directly associated with reports of diabetes distress (267). The prevalence of diabetes distress is reported to be 18-45% with an incidence of 38-48% over 18 months in people with type 2 diabetes (269). In the second Diabetes Attitudes, Wishes and Needs (DAWN2) study, significant diabetes distress was reported by 45% of the participants, but only 24% reported that their health care teams asked them how diabetes affected their lives (259). High levels of diabetes distress significantly impact medicationtaking behaviors and are linked to higher A1C, lower self-efficacy, and poorer dietary and exercise behaviors (5,267,269). DSMES has been shown to reduce diabetes distress (5). It may be helpful to provide counseling regarding expected diabetes-related versus generalized psychological distress, both at diagnosis and when disease state or treatment changes occur (270).

An RCT tested the effects of participation in a standardized 8-week mindful self-compassion program versus a control group among patients with type 1 and type 2 diabetes. Mindful self-compassion training increased self-compassion, reduced depression and diabetes distress, and improved A1C in the intervention group (271). An RCT of cognitive behavioral and social problem-solving approaches compared with diabetes education (272) in teens (aged 14-18 years) showed that diabetes distress and depressive symptoms were significantly reduced for up to 3 years postintervention. Neither glycemic control nor selfmanagement behaviors were improved over time. These recent studies support that a combination of approaches is needed to address distress, depression, and metabolic status.

Diabetes distress should be routinely monitored (273) using person-based diabetes-specific validated measures (1). If diabetes distress is identified, the person should be referred for specific diabetes education to address areas of diabetes self-care causing the patient distress and impacting clinical management. Diabetes distress is associated with anxiety, depression, and reduced health-related quality of life (274). People whose self-care remains impaired after tailored diabetes education should be referred by their care team to a behavioral health provider for evaluation and treatment.

Other psychosocial issues known to affect self-management and health outcomes include attitudes about the illness, expectations for medical management and outcomes, available resources (financial, social, and emotional) (275), and psychiatric history.

Referral to a Mental Health Specialist

Indications for referral to a mental health specialist familiar with diabetes management may include positive screening for overall stress related to work-life balance, diabetes distress, diabetes management difficulties, depression, anxiety, disordered eating, and cognitive dysfunction (see Table 5.2 for a complete list). It is preferable to incorporate psychosocial assessment and treatment into routine care rather than waiting for a specific problem or deterioration in metabolic or psychological status to occur (34,259). Providers should identify behavioral and mental health providers, ideally those who are knowledgeable about diabetes treatment and the psychosocial aspects of diabetes, to whom they can refer patients. The ADA provides a list of mental health providers who have received additional education in diabetes at the ADA Mental Health Provider Directory (professional.diabetes.org/mhp_listing). Ideally, psychosocial care providers should be embedded in diabetes care settings. Although the provider may not feel qualified to treat psychological problems (276), optimizing the patient-provider relationship as a foundation may increase the likelihood of the patient accepting referral for other services. Collaborative care interventions and a team approach have demonstrated efficacy in diabetes self-management, outcomes of depression, and psychosocial functioning (5,6).

Psychosocial/Emotional Distress

Clinically significant psychopathologic diagnoses are considerably more prevalent in people with diabetes than in those without (277,278). Symptoms, both clinical and subclinical, that interfere with the person's ability to carry out daily diabetes self-management tasks must be addressed. In addition to impacting a person's ability to carry out self-management, and the association of mental health diagnosis with poorer short-term glycemic stability, symptoms of emotional distress are associated with mortality risk (277,279). Providers should consider an assessment of symptoms of depression, anxiety, disordered eating, and cognitive capacities using appropriate standardized/validated tools at the initial visit, at periodic intervals when patient distress is suspected, and when there is a change in health, treatment, or life circumstance. Inclusion of caregivers and family members in this assessment is recommended. Diabetes distress is addressed as an independent condition (see the section DIABETES DISTRESS above), as this state is very common and expected and is distinct from the psychological disorders discussed below (1). A list of ageappropriate screening and evaluation measures is provided in the ADA position statement "Psychosocial Care for People with Diabetes" (1).

Anxiety Disorders

Recommendations

- 5.41 Consider screening for anxiety in people exhibiting anxiety or worries regarding diabetes complications, insulin administration, and taking of medications, as well as fear of hypoglycemia and/or hypoglycemia unawareness that interferes with selfmanagement behaviors, and in those who express fear, dread, or irrational thoughts and/or show anxiety symptoms such as avoidance behaviors, excessive repetitive behaviors, or social withdrawal. Refer for treatment if anxiety is present. B
- 5.42 People with hypoglycemia unawareness, which can co-occur with fear of hypoglycemia, should be treated using blood glucose awareness training (or other evidence-based intervention) to help re-establish awareness of symptoms of hypoglycemia and reduce fear of hypoglycemia. A

Anxiety symptoms and diagnosable disorders (e.g., generalized anxiety disorder, body dysmorphic disorder, obsessivecompulsive disorder, specific phobias, and posttraumatic stress disorder) are common in people with diabetes (280). The Behavioral Risk Factor Surveillance System (BRFSS) estimated the lifetime prevalence of generalized anxiety disorder to be 19.5% in people with either type 1 or type 2 diabetes (281). Common diabetes-specific concerns include fears related to hypoglycemia (282,283), not meeting blood glucose targets (280), and insulin injections or infusion (284). Onset of complications presents another critical point in the disease course when anxiety can occur (1). People with diabetes who exhibit excessive diabetes self-management behaviors well beyond what is prescribed or needed to achieve glycemic targets may be experiencing symptoms of obsessive-compulsive disorder (285).

General anxiety is a predictor of injection-related anxiety and associated with fear of hypoglycemia (283,286). Fear of hypoglycemia and hypoglycemia unawareness often co-occur. Interventions aimed at treating one often benefit both (287). Fear of hypoglycemia may explain avoidance of behaviors associated with lowering glucose such as increasing insulin doses or frequency of monitoring. If fear of hypoglycemia is identified and a person does not have symptoms of hypoglycemia, a structured program of blood glucose awareness training delivered in routine clinical practice can improve A1C, reduce the rate of severe hypoglycemia, and restore hypoglycemia awareness (288,289). If not available within the practice setting, a structured program targeting both fear of hypoglycemia and unawareness should be sought out and implemented by a qualified behavioral practitioner (287,289-291).

Depression

Recommendations

- 5.43 Providers should consider annual screening of all patients with diabetes, especially those with a self-reported history of depression, for depressive symptoms with age-appropriate depression screening measures, recognizing that further evaluation will be necessary for individuals who have a positive screen. B
- 5.44 Beginning at diagnosis of complications or when there are

Table 5.2-Situations that warrant referral of a person with diabetes to a mental health provider for evaluation and treatment

- Self-care remains impaired in a person with diabetes distress after tailored diabetes education
- A positive screen on a validated screening tool for depressive symptoms
- The presence of symptoms or suspicions of disordered eating behavior, an eating disorder, or disrupted patterns of eating
- Intentional omission of insulin or oral medication to cause weight loss is identified
- A positive screen for anxiety or fear of hypoglycemia
- A serious mental illness is suspected
- In youth and families with behavioral self-care difficulties, repeated hospitalizations for diabetic ketoacidosis, or significant distress
- A positive screening for cognitive impairment
- Declining or impaired ability to perform diabetes self-care behaviors
- Before undergoing bariatric or metabolic surgery and after surgery, if assessment reveals an ongoing need for adjustment support

significant changes in medical status, consider assessment for depression. **B**

5.45 Referrals for treatment of depression should be made to mental health providers with experience using cognitive behavioral therapy, interpersonal therapy, or other evidence-based treatment approaches in conjunction with collaborative care with the patient's diabetes treatment team. A

History of depression, current depression, and antidepressant medication use are risk factors for the development of type 2 diabetes, especially if the individual has other risk factors such as obesity and family history of type 2 diabetes (292-294). Elevated depressive symptoms and depressive disorders affect one in four patients with type 1 or type 2 diabetes (258). Thus, routine screening for depressive symptoms is indicated in this high-risk population, including people with type 1 or type 2 diabetes, gestational diabetes mellitus, and postpartum diabetes. Regardless of diabetes type, women have significantly higher rates of depression than men (295).

Routine monitoring with age-appropriate validated measures (1) can help to identify if referral is warranted (296). Adult patients with a history of depressive symptoms need ongoing monitoring of depression recurrence within the context of routine care (292). Integrating mental and physical health care can improve outcomes. When a patient is in psychological therapy (talk or cognitive behavioral therapy), the mental health provider should be incorporated into the diabetes treatment team (297). As with DSMES, person-centered collaborative care approaches have been shown to improve both depression and medical outcomes (297). Depressive symptoms may also be a manifestation of reduced quality of life secondary to disease burden (also see Diabetes Distress) and resultant changes in resource allocation impacting the person and their family. When depressive symptoms are identified, it is important to query origins both diabetesspecific and due to other life circumstances (274,298).

Various RCTs have shown improvements in diabetes and related health outcomes when depression is simultaneously treated (297,299,300). It is important to note that medical regimen should also be monitored in response to reduction in depressive symptoms. People may agree to or adopt previously refused treatment strategies (improving ability to follow recommended treatment behaviors), which may include increased physical activity and intensification of regimen behaviors and monitoring, resulting in changed glucose profiles.

Disordered Eating Behavior

Recommendations

- 5.46 Providers should consider reevaluating the treatment regimen of people with diabetes who present with symptoms of disordered eating behavior, an eating disorder, or disrupted patterns of eating. B
- 5.47 Consider screening for disordered or disrupted eating using validated screening measures

when hyperglycemia and weight loss are unexplained based on self-reported behaviors related to medication dosing, meal plan, and physical activity. In addition, a review of the medical regimen is recommended to identify potential treatmentrelated effects on hunger/caloric intake. **B**

Estimated prevalence of disordered eating behavior and diagnosable eating disorders in people with diabetes varies (301-303). For people with type 1 diabetes, insulin omission causing glycosuria in order to lose weight is the most commonly reported disordered eating behavior (304,305); in people with type 2 diabetes, bingeing (excessive food intake with an accompanying sense of loss of control) is most commonly reported. For people with type 2 diabetes treated with insulin, intentional omission is also frequently reported (306). People with diabetes and diagnosable eating disorders have high rates of comorbid psychiatric disorders (307). People with type 1 diabetes and eating disorders have high rates of diabetes distress and fear of hypoglycemia (308).

When evaluating symptoms of disordered or disrupted eating (when the individual exhibits eating behaviors that appear maladaptive but are not volitional, such as bingeing caused by loss of satiety cues), etiology and motivation for the behavior should be evaluated (303,309). Mixed intervention results point to the need for treatment of eating disorders and disordered eating behavior in the context of the disease and its treatment. More rigorous methods to identify underlying mechanisms of action that drive change in eating and treatment behaviors, as well as associated mental distress, are needed (310). Adjunctive medication such as glucagon-like peptide 1 receptor agonists (311) may help individuals not only to meet glycemic targets but also to regulate hunger and food intake, thus having the potential to reduce uncontrollable hunger and bulimic symptoms. Caution should be taken in labeling individuals with diabetes as having a diagnosable psychiatric disorder, i.e., an eating disorder, when disordered or disrupted eating patterns are found to be associated with the disease and its treatment. In other words, patterns of maladaptive food intake that appear to have a psychological origin may be driven by physiologic disruption in hunger and satiety cues, metabolic perturbations, and/or secondary distress because of the individual's inability to control their hunger and satiety (303,309).

Serious Mental Illness

Recommendations

- 5.48 Incorporate active monitoring of diabetes self-care activities into treatment goals for people with diabetes and serious mental illness. B
- 5.49 In people who are prescribed atypical antipsychotic medications, screen for prediabetes and diabetes 4 months after medication initiation and at least annually thereafter. B
- **5.50** If a second-generation antipsychotic medication is prescribed for adolescents or adults with diabetes, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed. **C**

Studies of individuals with serious mental illness, particularly schizophrenia and other thought disorders, show significantly increased rates of type 2 diabetes (312). People with schizophrenia should be monitored for type 2 diabetes because of the known comorbidity. Disordered thinking and judgment can be expected to make it difficult to engage in behavior that reduces risk factors for type 2 diabetes, such as restrained eating for weight management. Further, people with serious mental health disorders and diabetes frequently experience moderate psychological distress, suggesting pervasive intrusion of mental health issues into daily functioning (313). Coordinated management of diabetes or prediabetes and serious mental illness is recommended to achieve diabetes treatment targets. In addition, those taking second-generation (atypical) antipsychotics, such as olanzapine, require greater monitoring because of an increase in risk of type 2 diabetes associated with this medication (314-316). Because of this increased risk, people should be screened for prediabetes or diabetes 4 months after medication initiation and at least annually thereafter. Serious mental illness is often associated with the inability to evaluate and utilize information to make judgments about treatment options. When a person has an established diagnosis of a mental illness that impacts judgment, activities of daily living, and ability to establish a collaborative relationship with care providers, it is wise to include a nonmedical caretaker in decision-making regarding the medical regimen. This person can help improve the patient's ability to follow the agreed-upon regimen through both monitoring and caretaking functions (317).

Cognitive Capacity/Impairment

Recommendations

- 5.51 Cognitive capacity should be monitored throughout the life span for all individuals with diabetes, particularly in those who have documented cognitive disabilities, those who experience severe hypoglycemia, very young children, and older adults. B
- **5.52** If cognitive capacity changes or appears to be suboptimal for provider-patient decision-making and/or behavioral self-management, referral for a formal assessment should be considered. E

Cognitive capacity is generally defined as attention, memory, logic and reasoning,

and auditory and visual processing, all of which are involved in diabetes self-management behavior (318). Having diabetes over decades-type 1 and type 2-has been shown to be associated with cognitive decline (319-321). Declines have been shown to impact executive function and information processing speed; they are not consistent between people, and evidence is lacking regarding a known course of decline (322). Diagnosis of dementia is also more prevalent in the population of individuals with diabetes, both type 1 and type 2 (323). Thus, monitoring of cognitive capacity of individuals is recommended, particularly regarding their ability to self-monitor and make judgements about their symptoms, physical status, and needed alterations to their self-management behaviors, all of which are mediated by executive function (323). As with other disorders affecting mental capacity (e.g., major psychiatric disorders), the key issue is whether the person can enter into a collaboration with the care team to achieve optimal metabolic outcomes and prevent complications, both short and long term (313). When this ability is shown to be altered, declining, or absent, a lay care provider should be introduced into the care team who serves in the capacities of day-to-day monitoring as well as a liaison with the rest of the care team (1). Cognitive capacity also contributes to ability to benefit from diabetes education and may indicate the need for alternative teaching approaches as well as remote monitoring. Youth will need second-party monitoring (e.g., parents and adult caregivers) until they are developmentally able to evaluate necessary information for self-management decisions and to inform resultant behavior changes.

Episodes of severe hypoglycemia are independently associated with decline, as well as the more immediate symptoms of mental confusion (324). Earlyonset type 1 diabetes has been shown to be associated with potential deficits in intellectual abilities, especially in the context of repeated episodes of severe hypoglycemia (325). (See Section 14, "Children and Adolescents," https://doi .org/10.2337/dc22-S014, for information on early-onset diabetes and cognitive abilities and the effects of severe hypoglycemia on children's cognitive and academic performance.) Thus, for myriad reasons, cognitive capacity should be assessed during routine care to ascertain the person's ability to maintain and adjust self-management behaviors, such as dosing of medications, remediation approaches to glycemic excursions, etc., and to determine whether to enlist a caregiver in monitoring and decision-making regarding management behaviors. If cognitive capacity to carry out self-maintenance behaviors is guestioned, an age-appropriate test of cognitive capacity is recommended (1). Cognitive capacity should be evaluated in the context of the age of the person, for example, in very young children who are not expected to manage their disease independently and in older adults who may need active monitoring of regimen behaviors.

References

1. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. Diabetes Care 2016;39:2126–2140

2. Powers MA, Bardsley JK, Cypress M, et al. Diabetes self-management education and support in adults with type 2 diabetes: a consensus report of the American Diabetes Association, the Association of Diabetes Care & Education Specialists, the Academy of Nutrition and Dietetics, the American Academy of Family Physicians, the American Academy of FAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. Diabetes Care 2020;43:1636–1649

3. Rutten GEHM, Alzaid A. Person-centred type 2 diabetes care: time for a paradigm shift. Lancet Diabetes Endocrinol 2018;6:264–266

4. Dickinson JK, Guzman SJ, Maryniuk MD, et al. The use of language in diabetes care and education. Diabetes Care 2017;40:1790–1799

5. Fisher L, Hessler D, Glasgow RE, et al. REDEEM: a pragmatic trial to reduce diabetes distress. Diabetes Care 2013;36:2551–2558

6. Huang Y, Wei X, Wu T, Chen R, Guo A. Collaborative care for patients with depression and diabetes mellitus: a systematic review and meta-analysis. BMC Psychiatry 2013;13:260

 Hill-Briggs F. Problem solving in diabetes selfmanagement: a model of chronic illness selfmanagement behavior. Ann Behav Med 2003;25: 182–193

8. Greenwood DA, Howell F, Scher L, et al. A framework for optimizing technology-enabled diabetes and cardiometabolic care and education: the role of the diabetes care and education specialist. Diabetes Educ 2020;46: 315–322

9. Tran V-T, Barnes C, Montori VM, Falissard B, Ravaud P. Taxonomy of the burden of treatment: a multi-country web-based qualitative study of patients with chronic conditions. BMC Med 2015;13:115

10. Fitzpatrick SL, Golden SH, Stewart K, et al. Effect of DECIDE (Decision-making Education for Choices In Diabetes Everyday) program delivery modalities on clinical and behavioral outcomes in urban African Americans with type 2 diabetes: a randomized trial. Diabetes Care 2016;39: 2149–2157

11. Brunisholz KD, Briot P, Hamilton S, et al. Diabetes self-management education improves quality of care and clinical outcomes determined by a diabetes bundle measure. J Multidiscip Healthc 2014;7:533–542

12. Dickinson JK, Maryniuk MD. Building therapeutic relationships: choosing words that put people first. Clin Diabetes 2017;35:51–54

13. Beck J, Greenwood DA, Blanton L, et al.; 2017 Standards Revision Task Force. 2017 national standards for diabetes self-management education and support. Diabetes Care 2017;40: 1409–1419

14. Tang TS, Funnell MM, Brown MB, Kurlander JE. Self-management support in "real-world" settings: an empowerment-based intervention. Patient Educ Couns 2010;79:178–184

15. Marrero DG, Ard J, Delamater AM, et al. Twenty-first century behavioral medicine: a context for empowering clinicians and patients with diabetes: a consensus report. Diabetes Care 2013;36:463–470

16. Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care 2002;25:1159–1171

17. Haas L, Maryniuk M, Beck J, et al.; 2012 Standards Revision Task Force. National standards for diabetes self-management education and support. Diabetes Care 2014;37(Suppl. 1): S144–S153

18. Frosch DL, Uy V, Ochoa S, Mangione CM. Evaluation of a behavior support intervention for patients with poorly controlled diabetes. Arch Intern Med 2011;171:2011–2017

19. Cooke D, Bond R, Lawton J, et al.; U.K. NIHR DAFNE Study Group. Structured type 1 diabetes education delivered within routine care: impact on glycemic control and diabetes-specific quality of life. Diabetes Care 2013;36:270–272

20. Chrvala CA, Sherr D, Lipman RD. Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 2016;99:926–943

21. Marincic PZ, Salazar MV, Hardin A, et al. Diabetes self-management education and medical nutrition therapy: a multisite study documenting the efficacy of registered dietitian nutritionist interventions in the management of glycemic control and diabetic dyslipidemia through retrospective chart review. J Acad Nutr Diet 2019;119:449–463

22. Steinsbekk A, Rygg LØ, Lisulo M, Rise MB, Fretheim A. Group based diabetes selfmanagement education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res 2012;12:213

23. Cochran J, Conn VS. Meta-analysis of quality of life outcomes following diabetes selfmanagement training. Diabetes Educ 2008;34: 815–823

24. He X, Li J, Wang B, et al. Diabetes selfmanagement education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine 2017;55:712–731

25. Thorpe CT, Fahey LE, Johnson H, Deshpande M, Thorpe JM, Fisher EB. Facilitating healthy coping in patients with diabetes: a systematic review. Diabetes Educ 2013;39:33–52

26. Robbins JM, Thatcher GE, Webb DA, Valdmanis VG. Nutritionist visits, diabetes classes, and hospitalization rates and charges: the Urban Diabetes Study. Diabetes Care 2008;31:655–660

27. Duncan I, Ahmed T, Li QE, et al. Assessing the value of the diabetes educator. Diabetes Educ 2011;37:638–657

28. Strawbridge LM, Lloyd JT, Meadow A, Riley GF, Howell BL. One-year outcomes of diabetes self-management training among Medicare beneficiaries newly diagnosed with diabetes. Med Care 2017;55:391–397

29. Piatt GA, Anderson RM, Brooks MM, et al. 3year follow-up of clinical and behavioral improvements following a multifaceted diabetes care intervention: results of a randomized controlled trial. Diabetes Educ 2010;36:301–309 30. Glazier RH, Bajcar J, Kennie NR, Willson K. A systematic review of interventions to improve diabetes care in socially disadvantaged populations. Diabetes Care 2006;29:1675–1688 31. Hawthorne K, Robles Y, Cannings-John R, Edwards AGK. Culturally appropriate health education for type 2 diabetes mellitus in ethnic minority groups. Cochrane Database Syst Rev 1996;3:CD006424

32. Chodosh J, Morton SC, Mojica W, et al. Meta-analysis: chronic disease self-management programs for older adults. Ann Intern Med 2005;143:427–438

33. Sarkisian CA, Brown AF, Norris KC, Wintz RL, Mangione CM. A systematic review of diabetes self-care interventions for older, African American, or Latino adults. Diabetes Educ 2003; 29:467–479

34. Peyrot M, Rubin RR. Behavioral and psychosocial interventions in diabetes: a conceptual review. Diabetes Care 2007;30: 2433–2440

35. Naik AD, Palmer N, Petersen NJ, et al. Comparative effectiveness of goal setting in diabetes mellitus group clinics: randomized clinical trial. Arch Intern Med 2011;171:453–459 36. Duke S-AS, Colagiuri S, Colagiuri R. Individual patient education for people with type 2 diabetes mellitus. Cochrane Database Syst Rev 2009;1:CD005268

37. Odgers-Jewell K, Ball LE, Kelly JT, Isenring EA, Reidlinger DP, Thomas R. Effectiveness of groupbased self-management education for individuals with type 2 diabetes: a systematic review with meta-analyses and meta-regression. Diabet Med 2017;34:1027–1039

38. Pereira K, Phillips B, Johnson C, Vorderstrasse A. Internet delivered diabetes selfmanagement education: a review. Diabetes Technol Ther 2015;17:55–63

 Sepah SC, Jiang L, Peters AL. Long-term outcomes of a web-based diabetes prevention program: 2-year results of a single-arm longitudinal study. J Med Internet Res 2015;17:e92
 Greenwood DA, Gee PM, Fatkin KJ, Peeples M. A systematic review of reviews evaluating technology-enabled diabetes self-management education and support. J Diabetes Sci Technol 2017;11:1015-1027

41. Athinarayanan SJ, Adams RN, Hallberg SJ, et al. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: a 2-year non-randomized clinical trial. Front Endocrinol (Lausanne) 2019;10:348

42. Kumar S, Moseson H, Uppal J, Juusola JL. A diabetes mobile app with in-app coaching from a certified diabetes educator reduces A1C for individuals with type 2 diabetes. Diabetes Educ 2018;44:226–236

43. Hallberg SJ, McKenzie AL, Williams PT, et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study. Diabetes Ther 2018;9:583–612

44. Xu T, Pujara S, Sutton S, Rhee M. Telemedicine in the management of type 1 diabetes. Prev Chronic Dis 2018;15:E13

45. Dening J, Islam SMS, George E, Maddison R. Web-based interventions for dietary behavior in adults with type 2 diabetes: systematic review of randomized controlled trials. J Med Internet Res 2020;22:e16437

46. Omar MA, Hasan S, Palaian S, Mahameed S. The impact of a self-management educational program coordinated through WhatsApp on diabetes control. Pharm Pract (Granada) 2020; 18:1841

47. Liang K, Xie Q, Nie J, Deng J. Study on the effect of education for insulin injection in diabetic patients with new simulation tools. Medicine (Baltimore) 2021;100:e25424

48. Gershkowitz BD, Hillert CJ, Crotty BH. Digital coaching strategies to facilitate behavioral change in type 2 diabetes: a systematic review. J Clin Endocrinol Metab 2021;106:e1513–e1520

49. Lee M-K, Lee DY, Ahn H-Y, Park C-Y. A novel user utility score for diabetes management using tailored mobile coaching: secondary analysis of a randomized controlled trial. JMIR Mhealth Uhealth 2021;9:e17573

50. Isaacs D, Cox C, Schwab K, et al. Technology integration: the role of the diabetes care and education specialist in practice. Diabetes Educ 2020;46:323–334

51. Scalzo P. From the Association of Diabetes Care & Education Specialists: the role of the diabetes care and education specialist as a champion of technology integration. Sci Diabetes Self Manag Care 2021;47:120–123

52. Johnson TM, Murray MR, Huang Y. Associations between self-management education and comprehensive diabetes clinical care. Diabetes Spectr 2010;23:41–46

53. Greenwood DA, Litchman ML, Isaacs D, et al. A new taxonomy for technology-enabled diabetes self-management interventions: results of an umbrella review. J Diabetes Sci Technol. 11 August 2021 [Epub ahead of print]. DOI: https:// doi.org/10.1177/19322968211036430

54. van Eikenhorst L, Taxis K, van Dijk L, de Gier H. Pharmacist-led self-management interventions to improve diabetes outcomes. a systematic literature review and meta-analysis. Front Pharmacol 2017;8:891

55. Tshiananga JKT, Kocher S, Weber C, Erny-Albrecht K, Berndt K, Neeser K. The effect of nurse-led diabetes self-management education on glycosylated hemoglobin and cardiovascular risk factors: a meta-analysis. Diabetes Educ 2012;38:108–123

56. Evert AB, Dennison M, Gardner CD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 2019;42:731–754

57. Shah M, Kaselitz E, Heisler M. The role of community health workers in diabetes: update on current literature. Curr Diab Rep 2013;13: 163–171

58. Spencer MS, Kieffer EC, Sinco B, et al. Outcomes at 18 months from a community health worker and peer leader diabetes selfmanagement program for Latino adults. Diabetes Care 2018;41:1414–1422

59. Heisler M, Vijan S, Makki F, Piette JD. Diabetes control with reciprocal peer support versus nurse care management: a randomized trial. Ann Intern Med 2010;153:507–515

60. Long JA, Jahnle EC, Richardson DM, Loewenstein G, Volpp KG. Peer mentoring and financial incentives to improve glucose control in African American veterans: a randomized trial. Ann Intern Med 2012;156:416–424

61. Fisher EB, Boothroyd RI, Elstad EA, et al. Peer support of complex health behaviors in prevention and disease management with special reference to diabetes: systematic reviews. Clin Diabetes Endocrinol 2017;3:4

62. Litchman ML, Oser TK, Hodgson L, et al. Inperson and technology-mediated peer support in diabetes care: a systematic review of reviews and gap analysis. Diabetes Educ 2020;46:230–241

63. Foster G, Taylor SJC, Eldridge SE, Ramsay J, Griffiths CJ. Self-management education programmes by lay leaders for people with chronic conditions. Cochrane Database Syst Rev 2007;4:CD005108

64. Duncan I, Birkmeyer C, Coughlin S, Li QE, Sherr D, Boren S. Assessing the value of diabetes education. Diabetes Educ 2009;35:752–760

65. Strawbridge LM, Lloyd JT, Meadow A, Riley GF, Howell BL. Use of Medicare's diabetes selfmanagement training benefit. Health Educ Behav 2015;42:530–538

66. Horigan G, Davies M, Findlay-White F, Chaney D, Coates V. Reasons why patients referred to diabetes education programmes choose not to attend: a systematic review. Diabet Med 2017;34:14–26

67. Carey ME, Agarwal S, Horne R, Davies M, Slevin M, Coates V. Exploring organizational support for the provision of structured selfmanagement education for people with type 2 diabetes: findings from a qualitative study. Diabet Med 2019;36:761–770

68. Center For Health Law and Policy Innovation. Reconsidering cost-sharing for diabetes selfmanagement education: recommendations for policy reform. Accessed 19 October 2021. Available from https://www.chlpi.org/health_ library/reconsidering-cost-sharing-diabetes-selfmanagement-education-recommendations-policyreform/

69. Turner RM, Ma Q, Lorig K, Greenberg J, DeVries AR. Evaluation of a diabetes selfmanagement program: claims analysis on comorbid illnesses, health care utilization, and cost. J Med Internet Res 2018;20:e207

70. Centers for Medicare & Medicaid Services. COVID-19 Frequently Asked Questions (FAQs) on Medicare Fee-for-Service (FFS) Billing. 19 October 2021. Available from https://www.cms.gov/files/ document/03092020-covid-19-faqs-508.pdf

71. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018;41:2669–2701

72. Briggs Early K, Stanley K. Position of the Academy of Nutrition and Dietetics: the role of medical nutrition therapy and registered dietitian nutritionists in the prevention and treatment of prediabetes and type 2 diabetes. J Acad Nutr Diet 2018;118:343–353

73. Franz MJ, MacLeod J, Evert A, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J Acad Nutr Diet 2017;117:1659–1679

74. Mudaliar U, Zabetian A, Goodman M, et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in us settings: a systematic review and meta-analysis. PLoS Med 2016;13:e1002095

75. Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk:

a systematic review for the community preventive services task force combined diet and physical activity promotion programs to prevent diabetes. Ann Intern Med 2015;163:437–451

76. Hamman RF, Wing RR, Edelstein SL, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006;29: 2102–2107

77. Garvey WT, Ryan DH, Bohannon NJV, et al. Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care 2014;37:3309–3316

78. Kahan S, Fujioka K. Obesity pharmacotherapy in patients with type 2 diabetes. Diabetes Spectr 2017;30:250–257

79. Jeon CY, Lokken RP, Hu FB, van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 2007;30:744–752

80. Duncan GE, Perri MG, Theriaque DW, Hutson AD, Eckel RH, Stacpoole PW. Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care 2003; 26:557–562

81. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and metaanalysis of randomized clinical trials. J Acad Nutr Diet 2015;115:1447–1463

82. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an openlabel, cluster-randomised trial. Lancet 2018;391: 541–551

83. Wing RR, Lang W, Wadden TA, et al.; Look AHEAD Research Group. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011;34: 1481–1486 84. Sjöström L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014;311:2297–2304

85. Cefalu WT, Leiter LA, de Bruin TWA, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin's effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 2015;38:1218–1227

86. Prinz N, Schwandt A, Becker M, et al. Trajectories of body mass index from childhood to young adulthood among patients with type 1 diabetes—a longitudinal group-based modeling approach based on the DPV registry. J Pediatr 2018;201:78–85.e4

87. Lipman TH, Levitt Katz LE, Ratcliffe SJ, et al. Increasing incidence of type 1 diabetes in youth: twenty years of the Philadelphia Pediatric Diabetes Registry. Diabetes Care 2013;36: 1597–1603

88. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011;365:1597–1604

89. Hamdy O, Mottalib A, Morsi A, et al. Longterm effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care 2017;5:e000259

90. Nip ASY, Reboussin BA, Dabelea D, et al.; SEARCH for Diabetes in Youth Study Group. Disordered eating behaviors in youth and young adults with type 1 or type 2 diabetes receiving insulin therapy: the SEARCH for Diabetes in Youth study. Diabetes Care 2019;42:859–866

91. Mottalib A, Salsberg V, Mohd-Yusof B-N, et al. Effects of nutrition therapy on HbA1c and cardiovascular disease risk factors in overweight and obese patients with type 2 diabetes. Nutr J 2018;17:42

92. Estruch R, Ros E, Salas-Salvadó J, et al.; PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extravirgin olive oil or nuts. N Engl J Med 2018;378:e34 93. Saslow LR, Daubenmier JJ, Moskowitz JT, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very lowcarbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes 2017;7:304

94. Yancy WS, Crowley MJ, Dar MS, et al. Comparison of group medical visits combined with intensive weight management vs group medical visits alone for glycemia in patients with type 2 diabetes: a noninferiority randomized clinical trial. JAMA Intern Med 2020;180:70–79

95. Emadian A, Andrews RC, England CY, Wallace V, Thompson JL. The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups. Br J Nutr 2015;114:1656–1666

96. Gardner CD, Trepanowski JF, Del Gobbo LC, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA 2018;319:667–679

97. Korsmo-Haugen H-K, Brurberg KG, Mann J, Aas A-M. Carbohydrate quantity in the dietary management of type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2019;21:15–27

98. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–873

99. de Souza RJ, Bray GA, Carey VJ, et al. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr 2012;95: 614–625

100. Johnston BC, Kanters S, Bandayrel K, et al. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 2014;312:923–933

101. Fox CS, Golden SH, Anderson C, et al.; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Clinical Cardiology, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Quality of Care and Outcomes Research; American Diabetes Association. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2015;38: 1777–1803

102. Schwingshackl L, Chaimani A, Hoffmann G, Schwedhelm C, Boeing H. A network metaanalysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018;33:157–170

103. MacLeod J, Franz MJ, Handu D, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: nutrition intervention evidence reviews and recommendations. J Acad Nutr Diet 2017;117:1637–1658

104. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2017;105: 1462–1473

105. Benson G, Hayes J. An update on the Mediterranean, vegetarian, and DASH eating patterns in people with type 2 diabetes. Diabetes Spectr 2020;33:125–132

106. Esposito K, Maiorino MI, Ciotola M, et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 2009;151: 306–314

107. de Carvalho GB, Dias-Vasconcelos NL, Santos RKF, Brandão-Lima PN, da Silva DG, Pires LV. Effect of different dietary patterns on glycemic control in individuals with type 2 diabetes mellitus: a systematic review. Crit Rev Food Sci Nutr 2020;60:1999–2010

108. Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: a systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 2019;29:531–543

109. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2018;139: 239–252

110. van Zuuren EJ, Fedorowicz Z, Kuijpers T, Pijl H. Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. Am J Clin Nutr 2018;108:300–331

111. Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care 2017;5:e000354

112. Rinaldi S, Campbell EE, Fournier J, O'Connor C, Madill J. A comprehensive review of the literature supporting recommendations from the Canadian Diabetes Association for the use of a plant-based diet for management of type 2 diabetes. Can J Diabetes 2016;40:471–477

113. Pawlak R. Vegetarian diets in the prevention and management of diabetes and its complications. Diabetes Spectr 2017;30:82–88

114. Kirkpatrick CF, Bolick JP, Kris-Etherton PM, et al. Review of current evidence and clinical recommendations on the effects of lowcarbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol 2019;13:689–711.e1

115. Bowen ME, Cavanaugh KL, Wolff K, et al. The Diabetes Nutrition Education Study randomized controlled trial: a comparative effectiveness study of approaches to nutrition in diabetes self-management education. Patient Educ Couns 2016;99:1368–1376

116. Truman E, Lane D, Elliott C. Defining food literacy: a scoping review. Appetite 2017;116: 365–371

117. Food Literacy Center. What is food literacy? Accessed 31 August 2021. Available from https:// www.foodliteracycenter.org/about

118. DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ 2002;325:746

119. Delahanty LM, Nathan DM, Lachin JM, et al.; Diabetes Control and Complications Trial/ Epidemiology of Diabetes. Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial. Am J Clin Nutr 2009;89:518–524

120. Zafar MI, Mills KE, Zheng J, et al. Lowglycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2019;110:891–902

121. Wheeler ML, Dunbar SA, Jaacks LM, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 2012;35:434–445

122. Vega-López S, Venn BJ, Slavin JL. Relevance of the glycemic index and glycemic load for body

weight, diabetes, and cardiovascular disease. Nutrients 2018;10:E1361

123. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev 2009;1:CD006296

124. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2017;131:124–131

125. Goldenberg JZ, Day A, Brinkworth GD, et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ 2021;372:m4743

126. Lennerz BS, Koutnik AP, Azova S, Wolfsdorf JI, Ludwig DS. Carbohydrate restriction for diabetes: rediscovering centuries-old wisdom. J Clin Invest 2021;131:142246

127. Tay J, Luscombe-Marsh ND, Thompson CH, et al. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr 2015;102: 780–790

128. U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. Accessed 19 October 2021. Available from https://www.fda .gov/Drugs/DrugSafety/ucm475463.htm

129. Blau JE, Tella SH, Taylor SI, Rother KI. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab Res Rev 2017;33:e2924

130. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans 2020–2025. 9th Edition, December 2020. Accessed 19 October 2021. Available from https://www.dietaryguidelines_gov/sites/default/files/2020-12/ Dietary_Guidelines_for_Americans_2020-2025.pdf 131. He M, van Dam RM, Rimm E, Hu FB, Qi L. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation 2010;121: 2162–2168

132. Burger KNJ, Beulens JWJ, van der Schouw YT, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS One 2012;7:e43127

133. Partula V, Deschasaux M, Druesne-Pecollo N, et al.; Milieu Intérieur Consortium. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. Am J Clin Nutr 2020;112:195–207

134. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019;393:434–445

135. Hu Y, Ding M, Sampson L, et al. Intake of whole grain foods and risk of type 2 diabetes: results from three prospective cohort studies. BMJ 2020;370:m2206

136. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans 2015–2020. 8th

Edition, 2015. Accessed 19 October 2021. Available from https://www.health.gov/dietaryguidelines/ 2015/guidelines

137. Nansel TR, Lipsky LM, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr 2016;104:81–87

138. Katz ML, Mehta S, Nansel T, Quinn H, Lipsky LM, Laffel LMB. Associations of nutrient intake with glycemic control in youth with type 1 diabetes: differences by insulin regimen. Diabetes Technol Ther 2014;16:512–518

139. Rossi MCE, Nicolucci A, Di Bartolo P, et al. Diabetes Interactive Diary: a new telemedicine system enabling flexible diet and insulin therapy while improving quality of life: an open-label, international, multicenter, randomized study. Diabetes Care 2010;33:109–115

140. Laurenzi A, Bolla AM, Panigoni G, et al. Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR). Diabetes Care 2011;34:823–827

141. Sämann A, Mühlhauser I, Bender R, Kloos Ch, Müller UA. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia 2005;48:1965–1970

142. Bell KJ, Barclay AW, Petocz P, Colagiuri S, Brand-Miller JC. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2014;2:133–140

143. Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015;38:1008–1015 144. Bell KJ, Toschi E, Steil GM, Wolpert HA. Optimized mealtime insulin dosing for fat and protein in type 1 diabetes: application of a model-based approach to derive insulin doses for open-loop diabetes management. Diabetes Care 2016;39:1631–1634

145. Smart CEM, Evans M, O'Connell SM, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 2013;36:3897–3902

146. Smith TA, Smart CE, Howley PP, Lopez PE, King BR. For a high fat, high protein breakfast, preprandial administration of 125% of the insulin dose improves postprandial glycaemic excursions in people with type 1 diabetes using multiple daily injections: a cross-over trial. Diabet Med 2021;38:e14512

147. Paterson MA, Smart CEM, Lopez PE, et al. Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with type 1 diabetes mellitus. Diabet Med 2017;34:851–854

148. O'Connell SM, O'Toole N, Cronin C, et al. Is the glycaemic response from fat in meals dose dependent in children and adolescents with T1DM on intensive insulin therapy? ESPE Abstracts 89 FC3.4, 2018. Accessed 19 October 2021. Available from https://abstracts.eurospe .org/hrp/0089/hrp0089fc3.4

149. Bell KJ, Fio CZ, Twigg S, et al. Amount and type of dietary fat, postprandial glycemia, and insulin requirements in type 1 diabetes: a randomized within-subject trial. Diabetes Care 2020;43:59–66

150. Metwally M, Cheung TO, Smith R, Bell KJ. Insulin pump dosing strategies for meals varying in fat, protein or glycaemic index or grazing-style meals in type 1 diabetes: a systematic review. Diabetes Res Clin Pract 2021;172:108516

151. Campbell MD, Walker M, King D, et al. Carbohydrate counting at meal time followed by a small secondary postprandial bolus injection at 3 hours prevents late hyperglycemia, without hypoglycemia, after a high-carbohydrate, high-fat meal in type 1 diabetes. Diabetes Care 2016;39: e141–e142

152. Angelopoulos T, Kokkinos A, Liaskos C, et al. The effect of slow spaced eating on hunger and satiety in overweight and obese patients with type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2014;2:e000013

153. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care 2014;37: 2864–2883

154. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014;383:1999–2007

155. Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2008;88:660–666

156. Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev 2007;4:CD002181

157. Layman DK, Clifton P, Gannon MC, Krauss RM, Nuttall FQ. Protein in optimal health: heart disease and type 2 diabetes. Am J Clin Nutr 2008;87:15715–1575S

158. Ros E. Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am J Clin Nutr 2003;78(Suppl.):6175–625S

159. Forouhi NG, Imamura F, Sharp SJ, et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Med 2016;13:e1002094

160. Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med 2016;176: 1134–1145

161. Brehm BJ, Lattin BL, Summer SS, et al. Oneyear comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 2009;32:215–220

162. Shai I, Schwarzfuchs D, Henkin Y, et al.; Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a lowcarbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008;359:229–241

163. Brunerova L, Smejkalova V, Potockova J, Andel M. A comparison of the influence of a high-fat diet enriched in monounsaturated fatty acids and conventional diet on weight loss and metabolic parameters in obese non-diabetic and type 2 diabetic patients. Diabet Med 2007;24: 533–540 164. Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on health outcomes of a Mediterranean Diet with no restriction on fat intake: a systematic review and meta-analysis. Ann Intern Med 2016;165: 491–500

165. Sacks FM, Lichtenstein AH, Wu JHY, et al.; American Heart Association. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 2017;136:e1–e23

166. Jacobson TA, Maki KC, Orringer CE, et al.; NLA Expert Panel. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipid 2015;9:S1–S122.e1

167. Holman RR, Paul S, Farmer A, Tucker L, Stratton IM; Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes Study Group. Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes (AFORRD): a randomised controlled trial. Diabetologia 2009; 52:50–59

168. Bosch J, Gerstein HC, Dagenais GR, et al.; ORIGIN Trial Investigators. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med 2012;367:309–318

169. Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L; PUFAH Group.. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 366:14697

170. ASCEND Study Collaborative Group; Bowman L, Mafham M, Wallendszus K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med 2018;379:1540–1550

171. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019;380:11–22

172. Thomas MC, Moran J, Forsblom C, et al.; FinnDiane Study Group. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 2011;34:861–866

173. Ekinci El, Clarke S, Thomas MC, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 2011;34:703–709 174. Lennon SL, DellaValle DM, Rodder SG, et al. 2015 Evidence Analysis Library evidence-based nutrition practice guideline for the management of hypertension in adults. J Acad Nutr Diet 2017;117:1445–1458.e17

175. Maillot M, Drewnowski A. A conflict between nutritionally adequate diets and meeting the 2010 dietary guidelines for sodium. Am J Prev Med 2012;42:174–179

176. Aroda VR, Edelstein SL, Goldberg RB, et al.; Diabetes Prevention Program Research Group. Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab 2016;101:1754–1761

177. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 2013;11:452–459

178. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am 2014;43: 205–232 179. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 2016;133: 187–225

180. Pittas AG, Dawson-Hughes B, Sheehan P, et al.; D2d Research Group. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med 2019;381:520–530

181. Dawson-Hughes B, Staten MA, Knowler WC, et al.; D2d Research Group. Intratrial exposure to vitamin D and new-onset diabetes among adults with prediabetes: a secondary analysis from the Vitamin D and Type 2 Diabetes (D2d) study. Diabetes Care 2020;43:2916–2922

182. Zhang Y, Tan H, Tang J, et al. Effects of vitamin D supplementation on prevention of type 2 diabetes in patients with prediabetes: a systematic review and meta-analysis. Diabetes Care 2020;43:1650–1658

183. Barbarawi M, Zayed Y, Barbarawi O, et al. Effect of vitamin D supplementation on the incidence of diabetes mellitus. J Clin Endocrinol Metab 2020;105:dgaa335

184. National Agricultural Library, U.S. Department of Agriculture. Nutritive and nonnutritive sweetener resources. Accessed 20 October 2021. Available from https://www.nal.usda.gov/fnic/ nutritive-and-nonnutritive-sweetener-resources 185. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140:e596–e646

186. Johnson RK, Lichtenstein AH, Anderson CAM, et al.; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Quality of Care and Outcomes Research; Stroke Council. Low-calorie sweetened beverages and cardiometabolic health: a science advisory from the American Heart Association. Circulation 2018;138: e126–e140

187. Grotz VL, Pi-Sunyer X, Porte D Jr, Roberts A, Richard Trout J. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol 2017;88:22–33

188. Lohner S, Kuellenberg de Gaudry D, Toews I, Ferenci T, Meerpohl JJ. Non-nutritive sweeteners for diabetes mellitus. Cochrane Database Syst Rev 2020;5:CD012885

189. Sylvetsky AC, Chandran A, Talegawkar SA, Welsh JA, Drews K, El Ghormli L. Consumption of beverages containing low-calorie sweeteners, diet, and cardiometabolic health in youth with type 2 diabetes. J Acad Nutr Diet 2020;120: 1348–1358.e6

190. Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a metaanalysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr 2014;100:765–777

191. Rogers PJ, Hogenkamp PS, de Graaf C, et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes 2016;40:381–394 192. Laviada-Molina H, Molina-Segui F, Pérez-Gaxiola G, et al. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: systematic review and metaanalysis. Obes Rev 2020;21:e13020

193. Azad MB, Abou-Setta AM, Chauhan BF, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 2017;189:E929–E939

194. Mattes RD, Popkin BM. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr 2009;89:1–14

195. Hirahatake KM, Jacobs DR, Shikany JM, et al. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: the Coronary Artery Risk Development In Young Adults (CARDIA) Study. Am J Clin Nutr 2019;110: 733–741

196. Löfvenborg JE, Andersson T, Carlsson P-O, et al. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. Eur J Endocrinol 2016;175: 605–614

197. Daher MI, Matta JM, Abdel Nour AM. Nonnutritive sweeteners and type 2 diabetes: should we ring the bell? Diabetes Res Clin Pract 2019;155:107786

198. Romo-Romo A, Aguilar-Salinas CA, Gómez-Díaz RA, et al. Non-nutritive sweeteners: evidence on their association with metabolic diseases and potential effects on glucose metabolism and appetite. Rev Invest Clin 2017;69:129–138

199. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC, U.S. Department of Health and Human Services, 2018

200. Bazargan-Hejazi S, Arroyo JS, Hsia S, Brojeni NR, Pan D. A racial comparison of differences between self-reported and objectively measured physical activity among US adults with diabetes. Ethn Dis 2017;27:403–410

201. Sluik D, Buijsse B, Muckelbauer R, et al. Physical activity and mortality in individuals with diabetes mellitus: a prospective study and metaanalysis. Arch Intern Med 2012;172:1285–1295

202. Tikkanen-Dolenc H, Wadén J, Forsblom C, et al.; FinnDiane Study Group. Physical activity reduces risk of premature mortality in patients with type 1 diabetes with and without kidney disease. Diabetes Care 2017;40:1727–1732

203. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001;286:1218–1227

204. Peters AL, Laffel L (Eds.). American Diabetes Association/JDRF Type 1 Diabetes Sourcebook. Alexandria, VA, American Diabetes Association, 2013

205. Ostman C, Jewiss D, King N, Smart NA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2018;139:380–391

206. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 2003;46: 1071–1081

207. Pandey A, Patel KV, Bahnson JL, et al.; Look AHEAD Research Group. Association of intensive lifestyle intervention, fitness, and body mass index with risk of heart failure in overweight or obese adults with type 2 diabetes mellitus: an analysis from the Look AHEAD trial. Circulation 2020:141:1295–1306

208. Rejeski WJ, Ip EH, Bertoni AG, et al.; Look AHEAD Research Group. Lifestyle change and mobility in obese adults with type 2 diabetes. N Engl J Med 2012;366:1209–1217

209. Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 2016;39:2065–2079

210. Frediani JK, Bienvenida AF, Li J, Higgins MK, Lobelo F. Physical fitness and activity changes after a 24-week soccer-based adaptation of the U.S diabetes prevention program intervention in Hispanic men. Prog Cardiovasc Dis 2020;63: 775–785

211. Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 2010;7:40

212. Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 2017;5:377–390

213. Anderson BJ, Laffel LM, Domenger C, et al. Factors associated with diabetes-specific healthrelated quality of life in youth with type 1 diabetes: the global TEENs study. Diabetes Care 2017;40:1002–1009

214. Adolfsson P, Riddell MC, Taplin CE, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Exercise in children and adolescents with diabetes. Pediatr Diabetes 2018;19(Suppl. 27): 205–226

215. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a metaanalysis. Obes Rev 2015;16:942–961

216. Little JP, Gillen JB, Percival ME, et al. Lowvolume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985) 2011;111: 1554–1560

217. Bohn B, Herbst A, Pfeifer M, et al.; DPV Initiative. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a crosssectional multicenter study of 18,028 patients. Diabetes Care 2015;38:1536–1543

218. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed. Accessed 20 October 2021. Available from https://health.gov/sites/default/ files/2019-09/Physical_Activity_Guidelines_2nd_ edition.pdf

219. Willey KA, Singh MAF. Battling insulin resistance in elderly obese people with type 2 diabetes: bring on the heavy weights. Diabetes Care 2003;26:1580–1588

220. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 2009;41:998–1005 221. Dempsey PC, Larsen RN, Sethi P, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care 2016:39:964–972

222. Wang Y, Lee D-C, Brellenthin AG, et al. Leisure-time running reduces the risk of incident type 2 diabetes. Am J Med 2019;132:1225–1232

223. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013;159:543–551

224. Pai L-W, Li T-C, Hwu Y-J, Chang S-C, Chen L-L, Chang P-Y. The effectiveness of regular leisuretime physical activities on long-term glycemic control in people with type 2 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2016;113:77–85

225. Cui J, Yan J-H, Yan L-M, Pan L, Le J-J, Guo Y-Z. Effects of yoga in adults with type 2 diabetes mellitus: a meta-analysis. J Diabetes Investig 2017;8:201–209

226. Lee MS, Jun JH, Lim H-J, Lim H-S. A systematic review and meta-analysis of tai chi for treating type 2 diabetes. Maturitas 2015;80: 14–23

227. Rees JL, Johnson ST, Boulé NG. Aquatic exercise for adults with type 2 diabetes: a metaanalysis. Acta Diabetol 2017;54:895–904

228. Colberg SR, Sigal RJ, Fernhall B, et al.; American College of Sports Medicine; American Diabetes Association. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care 2010;33:2692–2696

229. Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 2010;304:2253–2262

230. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO; ADA. Screening for coronary artery disease in patients with diabetes. Diabetes Care 2007;30:2729–2736

231. Peters A, Laffel L, Colberg SR, Riddell MC. Physical activity: regulation of glucose metabolism, clinical management strategies, and weight control. In American Diabetes Association/JDRF Type 1 Diabetes Sourcebook. Alexandria, VA, American Diabetes Association, 2013

232. Colberg SR. Exercise and Diabetes: A Clinician's Guide to Prescribing Physical Activity. 1st ed. Alexandria, VA, American Diabetes Association, 2013

233. Lemaster JW, Reiber GE, Smith DG, Heagerty PJ, Wallace C. Daily weight-bearing activity does not increase the risk of diabetic foot ulcers. Med Sci Sports Exerc 2003;35:1093–1099 234. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 2006;29:1294–1299

235. Spallone V, Ziegler D, Freeman R, et al.; Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 2011;27:639–653

236. Pop-Busui R, Evans GW, Gerstein HC, et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010;33:1578–1584

237. Suarez L, Barrett-Connor E. Interaction between cigarette smoking and diabetes mellitus in the prediction of death attributed to cardiovascular disease. Am J Epidemiol 1984;120: 670–675

238. Stanton CA, Keith DR, Gaalema DE, et al. Trends in tobacco use among US adults with chronic health conditions: National Survey on Drug Use and Health 2005-2013. Prev Med 2016;92:160–168

239. Bae J. Differences in cigarette use behaviors by age at the time of diagnosis with diabetes from young adulthood to adulthood: results from the National Longitudinal Study of Adolescent Health. J Prev Med Public Health 2013;46:249–260

240. Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res 2017;14:265–276

241. Kar D, Gillies C, Zaccardi F, et al. Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 2016;15:158

242. Pan A, Wang Y, Talaei M, Hu FB. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: a meta-analysis and systematic review. Circulation 2015;132:1795–1804

243. Jankowich M, Choudhary G, Taveira TH, Wu W-C. Age-, race-, and gender-specific prevalence of diabetes among smokers. Diabetes Res Clin Pract 2011;93:e101–e105

244. Akter S, Goto A, Mizoue T. Smoking and the risk of type 2 diabetes in Japan: a systematic review and meta-analysis. J Epidemiol 2017;27: 553–561

245. Liu X, Bragg F, Yang L, et al.; China Kadoorie Biobank Collaborative Group. Smoking and smoking cessation in relation to risk of diabetes in Chinese men and women: a 9-year prospective study of 0-5 million people. Lancet Public Health 2018;3:e167–e176

246. Tonstad S, Lawrence D. Varenicline in smokers with diabetes: a pooled analysis of 15 randomized, placebo-controlled studies of varenicline. J Diabetes Investig 2017;8:93–100

247. West R. Tobacco smoking: health impact, prevalence, correlates and interventions. Psychol Health 2017;32:1018–1036

248. Ranney L, Melvin C, Lux L, McClain E, Lohr KN. Systematic review: smoking cessation intervention strategies for adults and adults in special populations. Ann Intern Med 2006;145: 845–856

249. Tian J, Venn A, Otahal P, Gall S. The association between quitting smoking and weight gain: a systematic review and metaanalysis of prospective cohort studies. Obes Rev 2015;16:883–901

250. Clair C, Rigotti NA, Porneala B, et al. Association of smoking cessation and weight change with cardiovascular disease among adults with and without diabetes. JAMA 2013;309: 1014–1021

251. Voulgari C, Katsilambros N, Tentolouris N. Smoking cessation predicts amelioration of

microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study. Metabolism 2011;60:1456–1464

252. Huerta TR, Walker DM, Mullen D, Johnson TJ, Ford EW. Trends in e-cigarette awareness and perceived harmfulness in the U.S. Am J Prev Med 2017;52:339–346

253. Pericot-Valverde I, Gaalema DE, Priest JS, Higgins ST. E-cigarette awareness, perceived harmfulness, and ever use among U.S. adults. Prev Med 2017;104:92–99

254. Centers for Disease Control and Prevention. Smoking & tobacco use: Outbreak of lung injury associated with e-cigarette use, or vaping, products. Accessed 20 October 2021. Available from https://www.cdc.gov/tobacco/ basic_information/e-cigarettes/severe-lungdisease.html

255. Reid RD, Malcolm J, Wooding E, et al. Prospective, cluster-randomized trial to implement the Ottawa Model for Smoking Cessation in diabetes education programs in Ontario, Canada. Diabetes Care 2018;41:406–412 256. Anderson RJ, Grigsby AB, Freedland KE, et al. Anxiety and poor glycemic control: a metaanalytic review of the literature. Int J Psychiatry Med 2002;32:235–247

257. Delahanty LM, Grant RW, Wittenberg E, et al. Association of diabetes-related emotional distress with diabetes treatment in primary care patients with type 2 diabetes. Diabet Med 2007;24:48–54

258. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a metaanalysis. Diabetes Care 2001;24:1069–1078

259. Nicolucci A, Kovacs Burns K, Holt RIG, et al.; DAWN2 Study Group. Diabetes Attitudes, Wishes and Needs second study (DAWN2[™]): crossnational benchmarking of diabetes-related psychosocial outcomes for people with diabetes. Diabet Med 2013;30:767–777

260. Ducat L, Philipson LH, Anderson BJ. The mental health comorbidities of diabetes. JAMA 2014;312:691–692

261. Gonzalvo JD, Hamm J, Eaves S, et al. A practical approach to mental health for the diabetes educator. AADE Pract 2019;7:29–44

262. Robinson DJ, Coons M, Haensel H, Vallis M; Diabetes Canada Clinical Practice Guidelines Expert Committee. Diabetes and mental health. Can J Diabetes 2018;42(Suppl. 1):S130–S141

263. Harkness E, Macdonald W, Valderas J, Coventry P, Gask L, Bower P. Identifying psychosocial interventions that improve both physical and mental health in patients with diabetes: a systematic review and meta-analysis. Diabetes Care 2010;33:926–930

264. Radcliff TA, Côté MJ, Whittington MD, et al. Cost-effectiveness of three doses of a behavioral intervention to prevent or delay type 2 diabetes in rural areas. J Acad Nutr Diet 2020;120: 1163–1171

265. Weissberg-Benchell J, Shapiro JB. A review of interventions aimed at facilitating successful transition planning and transfer to adult care among youth with chronic illness. Pediatr Ann 2017;46:e182–e187

266. O'Gurek DT, Henke C. A practical approach to screening for social determinants of health. Fam Pract Manag 2018;25:7–12

267. Fisher L, Hessler DM, Polonsky WH, Mullan J. When is diabetes distress clinically meaningful?: establishing cut points for the Diabetes Distress Scale. Diabetes Care 2012;35: 259–264

268. Fisher L, Glasgow RE, Strycker LA. The relationship between diabetes distress and clinical depression with glycemic control among patients with type 2 diabetes. Diabetes Care 2010;33:1034–1036

269. Aikens JE. Prospective associations between emotional distress and poor outcomes in type 2 diabetes. Diabetes Care 2012;35: 2472–2478

270. Fisher L, Skaff MM, Mullan JT, et al. Clinical depression versus distress among patients with type 2 diabetes: not just a question of semantics. Diabetes Care 2007;30:542–548

271. Friis AM, Johnson MH, Cutfield RG, Consedine NS. Kindness matters: a randomized controlled trial of a mindful self-compassion intervention improves depression, distress, and HbA_{1c} among patients with diabetes. Diabetes Care 2016;39:1963–1971

272. Weissberg-Benchell J, Shapiro JB, Bryant FB, Hood KK. Supporting Teen Problem-Solving (STEPS) 3 year outcomes: preventing diabetesspecific emotional distress and depressive symptoms in adolescents with type 1 diabetes. J Consult Clin Psychol 2020;88:1019–1031

273. Snoek FJ, Bremmer MA, Hermanns N. Constructs of depression and distress in diabetes: time for an appraisal. Lancet Diabetes Endocrinol 2015;3:450–460

274. Liu X, Haagsma J, Sijbrands E, et al. Anxiety and depression in diabetes care: longitudinal associations with health-related quality of life. Sci Rep 2020;10:8307

275. Gary TL, Safford MM, Gerzoff RB, et al. Perception of neighborhood problems, health behaviors, and diabetes outcomes among adults with diabetes in managed care: the Translating Research Into Action for Diabetes (TRIAD) study. Diabetes Care 2008;31:273–278

276. Beverly EA, Hultgren BA, Brooks KM, Ritholz MD, Abrahamson MJ, Weinger K. Understanding physicians' challenges when treating type 2 diabetic patients' social and emotional difficulties: a qualitative study. Diabetes Care 2011;34: 1086–1088

277. Naicker K, Johnson JA, Skogen JC, et al. Type 2 diabetes and comorbid symptoms of depression and anxiety: longitudinal associations with mortality risk. Diabetes Care 2017;40:352–358

278. de Groot M, Golden SH, Wagner J. Psychological conditions in adults with diabetes. Am Psychol 2016;71:552–562

279. Guerrero Fernández de Alba I, Gimeno-Miguel A, Poblador-Plou B, et al. Association between mental health comorbidity and health outcomes in type 2 diabetes mellitus patients. Sci Rep 2020;10:19583

280. Smith KJ, Béland M, Clyde M, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res 2013;74:89–99

281. Li C, Barker L, Ford ES, Zhang X, Strine TW, Mokdad AH. Diabetes and anxiety in US adults: findings from the 2006 Behavioral Risk Factor Surveillance System. Diabet Med 2008;25:878–881 282. Cox DJ, Irvine A, Gonder-Frederick L, Nowacek G, Butterfield J. Fear of hypoglycemia: quantification, validation, and utilization. Diabetes Care 1987;10:617–621

283. Wild D, von Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L. A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. Patient Educ Couns 2007;68:10–15

284. Zambanini A, Newson RB, Maisey M, Feher MD. Injection related anxiety in insulin-treated diabetes. Diabetes Res Clin Pract 1999;46:239–246 285. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA, American Psychiatric Association, 2013

286. Mitsonis C, Dimopoulos N, Psarra V. P01-138 Clinical implications of anxiety in diabetes: a critical review of the evidence base. Eur Psychiatry 2009;24:S526

287. Yeoh E, Choudhary P, Nwokolo M, Ayis S, Amiel SA. Interventions that restore awareness of hypoglycemia in adults with type 1 diabetes: a systematic review and meta-analysis. Diabetes Care 2015;38:1592–1609

288. Cox DJ, Gonder-Frederick L, Polonsky W, Schlundt D, Kovatchev B, Clarke W. Blood glucose awareness training (BGAT-2): long-term benefits. Diabetes Care 2001;24:637–642

289. Gonder-Frederick LA, Schmidt KM, Vajda KA, et al. Psychometric properties of the hypoglycemia fear survey-II for adults with type 1 diabetes. Diabetes Care 2011;34:801–806

290. Cox DJ, Kovatchev B, Koev D, et al. Hypoglycemia anticipation, awareness and treatment training (HAATT) reduces occurrence of severe hypoglycemia among adults with type 1 diabetes mellitus. Int J Behav Med 2004;11: 212–218

291. Lamounier RN, Geloneze B, Leite SO, et al.; HAT Brazil study group. Hypoglycemia incidence and awareness among insulin-treated patients with diabetes: the HAT study in Brazil. Diabetol Metab Syndr 2018;10:83

292. Lustman PJ, Griffith LS, Clouse RE. Depression in adults with diabetes. Results of 5-yr follow-up study. Diabetes Care 1988;11:605–612

293. de Groot M, Crick KA, Long M, Saha C, Shubrook JH. Lifetime duration of depressive disorders in patients with type 2 diabetes. Diabetes Care 2016;39:2174–2181

294. Rubin RR, Ma Y, Marrero DG, et al.; Diabetes Prevention Program Research Group. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care 2008;31:420–426

295. Clouse RE, Lustman PJ, Freedland KE, Griffith LS, McGill JB, Carney RM. Depression and coronary heart disease in women with diabetes. Psychosom Med 2003;65:376–383

296. Watson SE, Spurling SE, Fieldhouse AM, Montgomery VL, Wintergerst KA. Depression and anxiety screening in adolescents with diabetes. Clin Pediatr (Phila) 2020;59:445–449

297. Katon WJ, Von Korff M, Lin EHB, et al. The Pathways Study: a randomized trial of collaborative care in patients with diabetes and depression. Arch Gen Psychiatry 2004;61:1042–1049

298. Cannon A, Handelsman Y, Heile M, Shannon M. Burden of illness in type 2 diabetes mellitus. J Manag Care Spec Pharm 2018;24(Suppl.):S5–S13

299. Atlantis E, Fahey P, Foster J. Collaborative care for comorbid depression and diabetes: a systematic review and meta-analysis. BMJ Open 2014;4:e004706

300. Ali MK, Chwastiak L, Poongothai S, et al.; INDEPENDENT Study Group. Effect of a collaborative care model on depressive symptoms and glycated hemoglobin, blood pressure, and serum cholesterol among patients with depression and diabetes in India: The INDEPENDENT randomized clinical trial. JAMA 2020;324:651–662

301. Pinhas-Hamiel O, Hamiel U, Levy-Shraga Y. Eating disorders in adolescents with type 1 diabetes: challenges in diagnosis and treatment. World J Diabetes 2015;6:517–526

302. Papelbaum M, Appolinário JC, Moreira R de O, Ellinger VCM, Kupfer R, Coutinho WF. Prevalence of eating disorders and psychiatric comorbidity in a clinical sample of type 2 diabetes mellitus patients. Br J Psychiatry 2005;27:135–138

303. Young-Hyman DL, Davis CL. Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification. Diabetes Care 2010;33:683–689

304. Pinhas-Hamiel O, Hamiel U, Greenfield Y, et al. Detecting intentional insulin omission for weight loss in girls with type 1 diabetes mellitus. Int J Eat Disord 2013;46:819–825

305. Goebel-Fabbri AE, Fikkan J, Franko DL, Pearson K, Anderson BJ, Weinger K. Insulin restriction and associated morbidity and mortality in women with type 1 diabetes. Diabetes Care 2008;31:415–419

306. Weinger K, Beverly EA. Barriers to achieving glycemic targets: who omits insulin and why? Diabetes Care 2010;33:450–452

307. Hudson JI, Hiripi E, Pope HG Jr, Kessler RC. The prevalence and correlates of eating disorders

in the National Comorbidity Survey Replication. Biol Psychiatry 2007;61:348–358

308. Martyn-Nemeth P, Quinn L, Hacker E, Park H, Kujath AS. Diabetes distress may adversely affect the eating styles of women with type 1 diabetes. Acta Diabetol 2014;51:683–686

309. Peterson CM, Fischer S, Young-Hyman D. Topical review: a comprehensive risk model for disordered eating in youth with type 1 diabetes. J Pediatr Psychol 2015;40:385–390

310. Banting R, Randle-Phillips C. A systematic review of psychological interventions for comorbid type 1 diabetes mellitus and eating disorders. Diabetes Manag (Lond) 2018;8:1–18

311. Garber AJ. Novel GLP-1 receptor agonists for diabetes. Expert Opin Investig Drugs 2012;21:45–57

312. Suvisaari J, Perälä J, Saarni SI, et al. Type 2 diabetes among persons with schizophrenia and other psychotic disorders in a general population survey. Eur Arch Psychiatry Clin Neurosci 2008;258:129–136

313. Mulligan K, McBain H, Lamontagne-Godwin F, et al. Barriers to effective diabetes management – a survey of people with severe mental illness. BMC Psychiatry 2018;18:165

314. Koro CE, Fedder DO, L'Italien GJ, et al. Assessment of independent effect of olanzapine and risperidone on risk of diabetes among patients with schizophrenia: population based nested case-control study. BMJ 2002;325:243

315. American Diabetes Association; American Psychiatric Association; American Association of Clinical Endocrinologists; North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 2004;27: 596–601

316. Holt RIG. Association between antipsychotic medication use and diabetes. Curr Diab Rep 2019;19:96 317. Kruse J, Schmitz N; German National Health Interview and Examination Survey. On the association between diabetes and mental disorders in a community sample: results from the German National Health Interview and Examination Survey. Diabetes Care 2003;26:1841–1846

318. Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia 2020;63:3–9

319. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC. The effects of type 1 diabetes on cognitive performance: a metaanalysis. Diabetes Care 2005;28:726–735

320. Carmichael OT, Neiberg RH, Dutton GR, et al. Long-term change in physiological markers and cognitive performance in type 2 diabetes: the Look AHEAD study. J Clin Endocrinol Metab 2020;105:dgaa591

321. Avila JC, Mejia-Arangom S, Jupiter D, Downer B, Wong R. The effect of diabetes on the cognitive trajectory of older adults in Mexico and the United States. J Gerontol B Psychol Sci Soc Sci 2021;76:e153–e164

322. Munshi MN. Cognitive dysfunction in older adults with diabetes: what a clinician needs to know. Diabetes Care 2017;40:461–467

323. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018;14: 591–604

324. Feinkohl I, Aung PP, Keller M, et al.; Edinburgh Type 2 Diabetes Study (ET2DS) Investigators. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 2014;37:507–515

325. Strudwick SK, Carne C, Gardiner J, Foster JK, Davis EA, Jones TW. Cognitive functioning in children with early onset type 1 diabetes and severe hypoglycemia. J Pediatr 2005;147:680–685